Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cureus ; 13(11): e19511, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804744

RESUMO

A previously independent 83-year-old lady presents with acute confusion, decreased mobility, urinary retention, and constipation, having recently received a course of oral acyclovir for shingles. The patient was noted to have extensive bruising to her upper limbs, and blood tests showed raised inflammatory markers with low platelet count, although this remained above 75 × 109/L. Her confusion on a background of shingles raised the differential diagnosis of varicella-zoster virus (VZV) encephalitis. CT head and MRI brain showed no acute intracranial abnormality. Lumbar puncture yielded frankly haemorrhagic cerebrospinal fluid (CSF), but viral polymerase chain reaction (PCR) testing was negative for the varicella-zoster virus. She later developed further right shoulder pain and right lower limb weakness three days post-initial lumbar puncture. Repeat CT head was unremarkable. MRI spine showed extensive spinal subarachnoid haemorrhage, with possible cervical arteriovenous malformation and L5/S1 spinal nerve compression. The patient was managed conservatively with dexamethasone and inpatient physiotherapy support. She was discharged after a long hospital stay at a new mobility baseline requiring hoist transfers.

2.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34353849

RESUMO

It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.


Assuntos
Antígenos HLA/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Humanos , Camundongos
3.
Mol Ther Oncolytics ; 21: 47-61, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33869742

RESUMO

Vaccinia virus (VV) is a powerful tool for cancer treatment with the potential for tumor tropism, efficient cell-to-cell spread, rapid replication in cancer cells, and stimulation of anti-tumor immunity. It has a well-defined safety profile and is being assessed in late-stage clinical trials. However, VV clinical utility is limited by rapid bloodstream neutralization and poor penetration into tumors. These factors have often restricted its route of delivery to intratumoral or intrahepatic artery injection and may impede repeat dosing. Chemical stealthing improves the pharmacokinetics of non-enveloped viruses, but it has not yet been applied to enveloped viruses such as VV. In the present study, amphiphilic polymer was used to coat VV, leading to reduced binding of a neutralizing anti-VV antibody (81.8% of polymer-coated VV [PCVV] staining positive versus 97.1% of VV [p = 0.0038]). Attachment of anti-mucin-1 (aMUC1) targeting antibody, to give aMUC1-PCVV, enabled binding of the construct to MUC1. In high MUC1 expressing CAPAN-2 cells, infection with PCVV was reduced compared to VV, while infection was restored with aMUC1-PCVV. Pharmacokinetics of aMUC1-PCVV, PCVV, and VV were evaluated. After intravenous (i.v.) injection of 1 × 108 viral genomes (VG) or 5 × 108 VG, circulation time for PCVV and aMUC1-PCVV was increased, with ~5-fold higher circulating dose at 5 min versus VV.

4.
Cancers (Basel) ; 13(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578735

RESUMO

Dysregulation of HLA (human leukocyte antigen) function is increasingly recognized as a common escape mechanism for cancers subject to the pressures exerted by immunosurveillance or immunotherapeutic interventions. Oncolytic viruses have the potential to counter this resistance by upregulating HLA expression or encouraging an HLA-independent immunological responses. However, to achieve the best therapeutic outcomes, a prospective understanding of the HLA phenotype of cancer patients is required to match them to the characteristics of different oncolytic strategies. Here, we consider the spectrum of immune competence observed in clinical disease and discuss how it can be best addressed using this novel and powerful treatment approach.

5.
Cytokine Growth Factor Rev ; 56: 115-123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32921554

RESUMO

Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias/terapia , Vírus Oncolíticos/imunologia
6.
Radiat Oncol ; 15(1): 151, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532291

RESUMO

BACKGROUND: Chemoradiotherapy remains the standard of care for locally advanced rectal cancer. Efforts to intensify treatment and increase response rates have yet to yield practice changing results due to increased toxicity and/or absence of increased radiosensitization. Enadenotucirev (EnAd) is a tumour selective, oncolytic adenovirus which can be given intravenously. Pre-clinical evidence of synergy with radiation warrants further clinical testing and assessment of safety with radiation. METHODS: Eligibility include histology confirmed locally advanced rectal cancer that require chemoradiation. The trial will use a Time-to-Event Continual Reassessment Model-based (TiTE-CRM) approach using toxicity and efficacy as co-primary endpoints to recommend the optimal dose and treatment schedule 30 patients will be recruited. Secondary endpoints include pathological complete response the neoadjuvant rectal score. A translational program will be based on a mandatory biopsy during the second week of treatment for 'proof-of-concept' and exploration of mechanism. The trial opened to recruitment in July 2019, at an expected rate of 1 per month for up to 4 years. DISCUSSION: Chemoradiation with Enadenotucirev as a radiosensitiser in locally Advanced Rectal cancer (CEDAR) is a prospective multicentre study testing a new paradigm in radiosensitization in rectal cancer. The unique ability of EnAd to selectively infect tumour cells following intravenous delivery is an exciting opportunity with a clear translational goal. The novel statistical design will make efficient use of both toxicity and efficacy data to inform subsequent studies. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03916510. Registered 16th April 2019.


Assuntos
Adenoviridae , Quimiorradioterapia/métodos , Terapia Combinada/métodos , Terapia Viral Oncolítica/métodos , Neoplasias Retais/terapia , Humanos , Projetos de Pesquisa
7.
Cancers (Basel) ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224979

RESUMO

Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity.

8.
Mol Ther Oncolytics ; 16: 289-301, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32195317

RESUMO

Oncolytic viruses (OVs) can trigger profound innate and adaptive immune responses, which have the potential both to potentiate and reduce the activity of OVs. Natural killer (NK) cells can mediate potent anti-viral and anti-tumoral responses, but there are no data on the role of NK cells in oncolytic adenovirus activity. Here, we have used two different oncolytic adenoviruses-the Ad5 E1A CR2-deletion mutant dl922-947 (group C) and the chimeric Ad3/Ad11p mutant enadenotucirev (group B)-to investigate the effect of NK cells on overall anti-cancer efficacy in ovarian cancer. Because human adenoviruses do not replicate in murine cells, we utilized primary human NK cells from peripheral blood and ovarian cancer ascites. Our results show that dl922-947 and enadenotucirev do not infect NK cells, but induce contact-dependent activation and anti-cancer cytotoxicity against adenovirus-infected ovarian cancer cells. Moreover, manipulation of NK receptors DNAM-1 (DNAX accessory molecule-1) and TIGIT (T cell immunoreceptor with Ig and ITIM domains) significantly influences NK cytotoxicity against adenovirus-infected cells. Together, these results indicate that NK cells act to increase the activity of oncolytic adenovirus in ovarian cancer and suggest that strategies to augment NK activity further via the blockade of inhibitory NK receptor TIGIT could enhance therapeutic potential of OVs.

9.
J Immunother Cancer ; 7(1): 320, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753017

RESUMO

BACKGROUND: Tumour-associated macrophages (TAMs) are often implicated in cancer progression but can also exert anti-tumour activities. Selective eradication of cancer-promoting (M2-like) TAM subsets is a highly sought-after goal. Here, we have devised a novel strategy to achieve selective TAM depletion, involving the use of T cell engagers to direct endogenous T cell cytotoxicity towards specific M2-like TAMs. To avoid "on-target off-tumour" toxicities, we have explored localising expression of the T cell engagers to the tumour with enadenotucirev (EnAd), an oncolytic adenovirus in Phase I/II clinical trials. METHOD: A panel of bi- and tri-valent T cell engagers (BiTEs/TriTEs) was constructed, recognising CD3ε on T cells and CD206 or folate receptor ß (FRß) on M2-like macrophages. Initial characterisation of BiTE/TriTE activity and specificity was performed with M1- and M2-polarised monocyte-derived macrophages and autologous lymphocytes from healthy human peripheral blood donors. T cell engagers were inserted into the genome of EnAd, and oncolytic activity and BiTE secretion assessed with DLD-1 tumour cells. Clinically-relevant ex vivo models (whole malignant ascites from cancer patients) were employed to assess the efficacies of the free- and virally-encoded T cell engagers. RESULTS: T cells activated by the CD206- and FRß-targeting BiTEs/TriTEs preferentially killed M2- over M1-polarised autologous macrophages, with EC50 values in the nanomolar range. A TriTE with bivalent CD3ε binding - the first of its kind - demonstrated enhanced potency whilst retaining target cell selectivity, whereas a CD28-containing TriTE elicited non-specific T cell activation. In immunosuppressive malignant ascites, both free and EnAd-encoded T cell engagers triggered endogenous T cell activation and IFN-γ production, leading to increased T cell numbers and depletion of CD11b+CD64+ ascites macrophages. Strikingly, surviving macrophages exhibited a general increase in M1 marker expression, suggesting microenvironmental repolarisation towards a pro-inflammatory state. CONCLUSIONS: This study is the first to achieve selective depletion of specific M2-like macrophage subsets, opening the possibility of eradicating cancer-supporting TAMs whilst sparing those with anti-tumour potential. Targeted TAM depletion with T cell engager-armed EnAd offers a powerful therapeutic approach combining direct cancer cell cytotoxicity with reversal of immune suppression.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Adenoviridae/genética , Biomarcadores , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Ligação Proteica , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Transgenes
10.
Bioconjug Chem ; 30(4): 1244-1257, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30874432

RESUMO

Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.


Assuntos
Adenoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Compostos de Diazônio/farmacologia , Terapia Viral Oncolítica , Polímeros/farmacologia , Linhagem Celular Tumoral , Compostos de Diazônio/química , Vetores Genéticos , Humanos , Polímeros/química , Transfecção
11.
J Immunother Cancer ; 7(1): 20, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691536

RESUMO

BACKGROUND: Enadenotucirev is a chimeric adenovirus with demonstrated preclinical tumor-selective cytotoxicity and a short half-life. Further clinical mechanism of action data showed that enadenotucirev can gain access to and replicate within different types of epithelial tumors. This phase 1 dose escalation study assessed intravenous (IV) dose escalation with enadenotucirev to establish the maximum tolerated dose (MTD) and subsequently identify a suitable schedule for repeated cycles. METHODS: Sixty-one patients with advanced epithelial tumors unresponsive to conventional therapy were enrolled and received enadenotucirev monotherapy as part of this study. During the phase 1a dose escalation (n = 22) and expansion (n = 9), delivery of enadenotucirev between 1 × 1010 and 1 × 1013 viral particles (vp) on days 1, 3, and 5 (single cycle) was used to determine an appropriate MTD. Subsequent treatment cohorts (phase 1a, n = 6 and phase 1b, n = 24) examined the feasibility of repeated dosing cycles in either 3-weekly or weekly dosing regimens. RESULTS: Enadenotucirev displayed a predictable and manageable safety profile at doses up to the MTD of 3 × 1012 vp, irrespective of infusion time or dosing schedule. The most commonly reported treatment-emergent adverse events (TEAEs) of grade 3 or higher were hypoxia, lymphopenia, and neutropenia. The frequency of all TEAEs (notably pyrexia and chills) was highest within 24 h of the first enadenotucirev infusion and decreased upon subsequent dosing. Additionally, delivery of three doses of enadenotucirev over 5 days optimized pharmacokinetic and chemokine profiles in the circulation over time. CONCLUSIONS: This study provides key clinical data in patients with solid epithelial tumors following treatment with IV enadenotucirev monotherapy and supports further investigation of enadenotucirev in combination with other therapeutic agents at doses up to the MTD of 3 × 1012 vp. TRIAL REGISTRATION: ( ClinicalTrials.gov Identifier: NCT02028442 ). Trial registration date: 07 January 2014 - Retrospectively registered.


Assuntos
Adenoviridae , Neoplasias Epiteliais e Glandulares/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Administração Intravenosa , Adulto , Idoso , Citocinas/sangue , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Epiteliais e Glandulares/virologia
12.
Cancer Res ; 78(24): 6852-6865, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30449733

RESUMO

: Effective immunotherapy of stromal-rich tumors requires simultaneous targeting of cancer cells and immunosuppressive elements of the microenvironment. Here, we modified the oncolytic group B adenovirus enadenotucirev to express a stroma-targeted bispecific T-cell engager (BiTE). This BiTE bound fibroblast activation protein on cancer-associated fibroblasts (CAF) and CD3ε on T cells, leading to potent T-cell activation and fibroblast death. Treatment of fresh clinical biopsies, including malignant ascites and solid prostate cancer tissue, with FAP-BiTE-encoding virus induced activation of tumor-infiltrating PD1+ T cells to kill CAFs. In ascites, this led to depletion of CAF-associated immunosuppressive factors, upregulation of proinflammatory cytokines, and increased gene expression of markers of antigen presentation, T-cell function, and trafficking. M2-like ascites macrophages exhibited a proinflammatory repolarization, indicating spectrum-wide alteration of the tumor microenvironment. With this approach, we have actively killed both cancer cells and tumor fibroblasts, reversing CAF-mediated immunosuppression and yielding a potent single-agent therapeutic that is ready for clinical assessment. SIGNIFICANCE: An engineered oncolytic adenovirus that encodes a bispecific antibody combines direct virolysis with endogenous T-cell activation to attack stromal fibroblasts, providing a multimodal treatment strategy within a single therapeutic agent.


Assuntos
Adenoviridae/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Biópsia , Complexo CD3/metabolismo , Técnicas de Cocultura , Terapia Combinada , Citocinas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Terapia de Imunossupressão , Inflamação , Leucócitos Mononucleares/citologia , Ativação Linfocitária , Neoplasias/terapia
13.
J Immunother Cancer ; 6(1): 55, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29898782

RESUMO

BACKGROUND: Oncolytic viruses are currently experiencing accelerated development in several laboratories worldwide, with some forty-seven clinical trials currently recruiting. Many oncolytic viruses combine targeted cytotoxicity to cancer cells with a proinflammatory cell lysis. Due to their additional potential to express immunomodulatory transgenes, they are also often known as oncolytic viral vaccines. However, several types of oncolytic viruses are human-specific and the lack of suitable immune-competent animal models complicates biologically relevant evaluation of their vaccine potential. This is a particular challenge for group B adenoviruses, which fail to infect even those immunocompetent animal model systems identified as semi-permissive for type 5 adenovirus. Here, we aim to develop a murine cell line capable of supporting replication of a group B oncolytic adenovirus, enadenotucirev (EnAd), for incorporation into a syngeneic immunocompetent animal model to explore the oncolytic vaccine potential of group B oncolytic viruses. METHODS: Transgenic murine cell lines were infected with EnAd expressing GFP transgene under replication-independent or -dependent promoters. Virus mRNA expression, genome replication, and late protein expression were determined by qRT-PCR, qPCR, and immunoblotting, respectively. We also use Balb/c immune-competent mice to determine the tumourogenicity and infectivity of transgenic murine cell lines. RESULTS: Our results show that a broad range of human carcinoma cells will support EnAd replication, but not murine carcinoma cells. Murine cells can be readily modified to express surface human CD46, one of the receptors for group B adenoviruses, allowing receptor-mediated uptake of EnAd particles into the murine cells and expression of CMV promoter-driven transgenes. Although the early E1A mRNA was expressed in murine cells at levels similar to human cells, adenovirus E2B and Fibre mRNA expression levels were hampered and few virus genomes were produced. Unlike previous reports on group C adenoviruses, trans-complementation of group B adenoviruses by co-infection with mouse adenovirus 1 did not rescue replication. A panel of group B adenoviruses expressing individual mouse adenovirus 1 genes were also unable to rescue EnAd replication. CONCLUSION: Together, these results indicate that there may be major differences in the early stages of replication of group C and B adenoviruses in murine cells, and that the block to the life cycle of B adenoviruses in murine cells occurs in the early stage of virus replication, perhaps reflecting poor activity of Ad11p E1A in murine cells.


Assuntos
Adenoviridae/patogenicidade , Proteína Cofatora de Membrana/metabolismo , Terapia Viral Oncolítica/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
14.
Macromol Biosci ; 18(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28902983

RESUMO

Oncolytic viruses (OVs) are novel anticancer agents that combine direct cancer cell killing with the stimulation of antitumor immunity. In addition, OVs can be engineered to deliver biological therapeutics directly to tumors, offering unique opportunities to design multimodal anticancer strategies. Here, a case for arming OVs with bispecific T cell engagers (BiTEs) is put forward. BiTEs redirect the cytotoxicity of polyclonal T cells to target cells of choice, and have demonstrated efficacy against a number of hematological cancers. However, the success of BiTEs in the treatment of solid tumors appears more limited, at least in part due to: (i) poor delivery kinetics and penetration into tumors, and (ii) on-target off-tumor activity, leading to dose-limiting toxicities. Linking the production of BiTEs to OV replication provides an exciting means to restrict production to the tumor site, widen their therapeutic window, and synergize with direct oncolysis. This review summarizes progress thus far in the preclinical development of BiTE-armed OVs, and explores the possibility of cotargeting cancer cells and nontransformed stromal cells.


Assuntos
Imunoterapia/tendências , Neoplasias/terapia , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/genética , Humanos , Neoplasias/imunologia , Neoplasias/virologia , Linfócitos T/imunologia , Linfócitos T/virologia
15.
J Immunother Cancer ; 5(1): 71, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28923104

RESUMO

BACKGROUND: Enadenotucirev (formerly ColoAd1) is a tumor-selective chimeric adenovirus with demonstrated preclinical activity. This phase 1 Mechanism of Action study assessed intravenous (IV) delivery of enadenotucirev in patients with resectable colorectal cancer (CRC), non-small-cell lung cancer (NSCLC), urothelial cell cancer (UCC), and renal cell cancer (RCC) with a comparator intratumoral (IT) dosed CRC patient cohort. METHODS: Seventeen patients scheduled for primary tumor resection were enrolled. IT injection of enadenotucirev (CRC only) was administered as a single dose (≤ 3 × 1011 viral particles [vp]) on day 1, followed by resection during days 8-15. IV infusion of enadenotucirev was administered by three separate doses (1 × 1012 vp) on days 1, 3, and 5, followed by resection during days 8-15 (CRC) or days 10-25 (NSCLC, UCC, and RCC). Enadenotucirev activity was measured using immunohistochemical staining of nuclear viral hexon and quantitative polymerase chain reaction for viral genomic DNA. RESULTS: Delivery of enadenotucirev was observed in most tumor samples following IV infusion, with little or no demonstrable activity in normal tissue. This virus delivery (by both IV and IT dosing) was accompanied by high local CD8+ cell infiltration in 80% of tested tumor samples, suggesting a potential enadenotucirev-driven immune response. Both methods of enadenotucirev delivery were well tolerated, with no treatment-associated serious adverse events. CONCLUSIONS: This study provides key delivery and feasibility data to support the use of IV infusion of enadenotucirev, or therapeutic transgene-bearing derivatives of it, in clinical trials across a range of epithelial tumors, including the ongoing combination study of enadenotucirev with the checkpoint inhibitor nivolumab. It also provides insights into the potential immune-stimulating properties of enadenotucirev. TRIAL REGISTRATION: This MOA study was a phase 1, multicenter, non-randomized, open-label study to investigate the administration of enadenotucirev in a preoperative setting (ClinicalTrials.gov: NCT02053220).


Assuntos
Adenovírus Humanos/fisiologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Renais/terapia , Carcinoma de Células de Transição/terapia , Neoplasias Colorretais/terapia , Neoplasias Pulmonares/terapia , Adenovírus Humanos/genética , Administração Intravenosa , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células de Transição/imunologia , Neoplasias Colorretais/imunologia , Terapia Combinada , DNA Viral/genética , Procedimentos Cirúrgicos do Sistema Digestório , Humanos , Neoplasias Pulmonares/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Procedimentos Cirúrgicos Pulmonares , Resultado do Tratamento , Procedimentos Cirúrgicos Urológicos
16.
Hum Gene Ther ; 28(11): 1033-1046, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28793793

RESUMO

Oncolytic viruses (OVs) are quickly moving toward the forefront of modern medicines. The reward for the decades of research invested into developing viral platforms that selectively replicate in and lyse tumor cells while sparking anticancer adaptive immunity is presenting in the form of durable therapeutic responses. While this has certainly been a concerted global effort, in this review for the 25th anniversary of the European Society of Gene and Cell Therapy, we focus on the contributions made by European researchers. Research centers across Europe have held central roles in advancing OVs, from the earliest reports of coincidental viral infections leading to antitumor efficacy, to advanced mechanistic studies, and now through Phase I-III trials to imminent regulatory approvals. While challenges still remain, with limitations in preclinical animal models, antiviral immune clearance, and manufacture restrictions enforced by poor viral yields in certain cases, the field has come a very long way in recent years. Thoughtful mechanistic integration of OVs with standard of care strategies and other newly approved therapies should provide potent novel approaches. Combination with immunotherapeutic regimes holds significant promise, and the ability to arm the viral platform with therapeutic proteins for localized expression at the tumor site provides an opportunity for creating highly effective synergistic treatments and brings a new age of targeted cancer therapeutics.


Assuntos
Imunidade Adaptativa/genética , Neoplasias/terapia , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/genética , Europa (Continente) , Humanos , Neoplasias/genética , Vírus Oncolíticos/imunologia
17.
Front Oncol ; 7: 153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791251

RESUMO

Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic ("cancer-killing") viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors while exerting minimal effects on normal tissue. There is a solid mechanistic basis for this potential synergy, with many viruses having developed strategies to inhibit cellular DNA repair pathways in order to protect themselves, during genome replication, from unwanted interference by cell processes that are normally triggered by DNA damage. Exploiting these abilities to inhibit cellular DNA repair following damage by therapeutic irradiation may well augment the anticancer potency of the approach. In this review, we focus on oncolytic adenovirus, the most widely developed and best understood oncolytic virus, and explore its various mechanisms for modulating cellular DNA repair pathways. The most obvious effects of the various adenovirus serotypes are to interfere with activity of the MRE11-Rad50-Nbs1 complex, temporally one of the first sensors of double-stranded DNA damage, and inhibition of DNA ligase IV, a central repair enzyme for healing double-stranded breaks by non-homologous end joining (NHEJ). There have been several preclinical and clinical studies of this approach and we assess the current state of progress. In addition, oncolytic viruses provide the option to promote a localized proinflammatory response, both by mediating immunogenic death of cancer cells by oncosis and also by encoding and expressing proinflammatory biologics within the tumor microenvironment. Both of these approaches provide exciting potential to augment the known immunological consequences of radiotherapy, aiming to develop systems capable of creating a systemic anticancer immune response following localized tumor treatment.

18.
EMBO Mol Med ; 9(8): 1067-1087, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28634161

RESUMO

Oncolytic viruses exploit the cancer cell phenotype to complete their lytic life cycle, releasing progeny virus to infect nearby cells and repeat the process. We modified the oncolytic group B adenovirus EnAdenotucirev (EnAd) to express a bispecific single-chain antibody, secreted from infected tumour cells into the microenvironment. This bispecific T-cell engager (BiTE) binds to EpCAM on target cells and cross-links them to CD3 on T cells, leading to clustering and activation of both CD4 and CD8 T cells. BiTE transcription can be controlled by the virus major late promoter, limiting expression to cancer cells that are permissive for virus replication. This approach can potentiate the cytotoxicity of EnAd, and we demonstrate using primary pleural effusions and peritoneal malignant ascites that infection of cancer cells with the BiTE-expressing EnAd leads to activation of endogenous T cells to kill endogenous tumour cells despite the immunosuppressive environment. In this way, we have armed EnAd to combine both direct oncolysis and T cell-mediated killing, yielding a potent therapeutic that should be readily transferred into the clinic.


Assuntos
Adenovírus Humanos/genética , Anticorpos Biespecíficos/metabolismo , Complexo CD3/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Fatores Imunológicos/metabolismo , Vírus Oncolíticos/genética , Linfócitos T Citotóxicos/imunologia , Anticorpos Biespecíficos/genética , Biópsia , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Tumorais Cultivadas
19.
Mol Ther Oncolytics ; 5: 62-74, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28480328

RESUMO

Enadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies. In this manuscript, we describe our tailored preclinical strategy designed to evaluate the key biological properties of enadenotucirev. As enadenotucirev does not replicate in animal cells, a panel of primary human cells was used to evaluate enadenotucirev replication selectivity in vitro, demonstrating that virus genome levels were >100-fold lower in normal cells relative to tumor cells. Acute intravenous tolerability in mice was used to assess virus particle-mediated toxicology and effects on innate immunity. These studies showed that particle toxicity could be ameliorated by dose fractionation, using an initial dose of virus to condition the host such that cytokine responses to subsequent doses were significantly attenuated. This, in turn, supported the initiation of a phase I intravenous clinical trial with a starting dose of 1 × 1010 virus particles given on days 1, 3, and 5.

20.
PLoS One ; 12(5): e0177810, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542292

RESUMO

Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.


Assuntos
Adenoviridae/genética , Neoplasias/genética , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Transgenes/genética , Adenoviridae/fisiologia , Expressão Gênica , Genes Reporter/genética , Neoplasias/virologia , Vírus Oncolíticos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA