Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38518758

RESUMO

BACKGROUND: Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the US with the morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in cardiac intensive care unit (ICU). METHODS: We developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict onset of cardiogenic shock. We prepared a cardiac ICU dataset using MIMIC-III database by annotating with physician adjudicated outcomes. This dataset that consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database that was also annotated with physician adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. RESULTS: CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717-0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top ten predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, Blood urea nitrogen, Systolic blood pressure, Serum chloride, Serum sodium, and Arterial blood pH. CONCLUSIONS: The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for the millions of patients who suffer from myocardial infarction and heart failure.

2.
Circ Arrhythm Electrophysiol ; 17(4): e012022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38415356

RESUMO

BACKGROUND: Germline HRAS gain-of-function pathogenic variants cause Costello syndrome (CS). During early childhood, 50% of patients develop multifocal atrial tachycardia, a treatment-resistant tachyarrhythmia of unknown pathogenesis. This study investigated how overactive HRAS activity triggers arrhythmogenesis in atrial-like cardiomyocytes (ACMs) derived from human-induced pluripotent stem cells bearing CS-associated HRAS variants. METHODS: HRAS Gly12 mutations were introduced into a human-induced pluripotent stem cells-ACM reporter line. Human-induced pluripotent stem cells were generated from patients with CS exhibiting tachyarrhythmia. Calcium transients and action potentials were assessed in induced pluripotent stem cell-derived ACMs. Automated patch clamping assessed funny currents. HCN inhibitors targeted pacemaker-like activity in mutant ACMs. Transcriptomic data were analyzed via differential gene expression and gene ontology. Immunoblotting evaluated protein expression associated with calcium handling and pacemaker-nodal expression. RESULTS: ACMs harboring HRAS variants displayed higher beating rates compared with healthy controls. The hyperpolarization activated cyclic nucleotide gated potassium channel inhibitor ivabradine and the Nav1.5 blocker flecainide significantly decreased beating rates in mutant ACMs, whereas voltage-gated calcium channel 1.2 blocker verapamil attenuated their irregularity. Electrophysiological assessment revealed an increased number of pacemaker-like cells with elevated funny current densities among mutant ACMs. Mutant ACMs demonstrated elevated gene expression (ie, ISL1, TBX3, TBX18) related to intracellular calcium homeostasis, heart rate, RAS signaling, and induction of pacemaker-nodal-like transcriptional programming. Immunoblotting confirmed increased protein levels for genes of interest and suppressed MAPK (mitogen-activated protein kinase) activity in mutant ACMs. CONCLUSIONS: CS-associated gain-of-function HRASG12 mutations in induced pluripotent stem cells-derived ACMs trigger transcriptional changes associated with enhanced automaticity and arrhythmic activity consistent with multifocal atrial tachycardia. This is the first human-induced pluripotent stem cell model establishing the mechanistic basis for multifocal atrial tachycardia in CS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Pré-Escolar , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Átrios do Coração/metabolismo , Taquicardia , Canais de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais de Ação/fisiologia , Diferenciação Celular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787076

RESUMO

Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo
4.
Matrix Biol ; 121: 41-55, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217119

RESUMO

To assess the contribution of individual TGF-ß isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-ß1, 2, or 3 heterozygous null mutation. The loss of TGF-ß2, and only TGF-ß2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-ß2 in the postnatal development of the heart, aorta and lungs.


Assuntos
Haploinsuficiência , Síndrome de Marfan , Animais , Camundongos , Aorta , Fibrilina-1/genética , Síndrome de Marfan/genética , Fenótipo , Fator de Crescimento Transformador beta2/genética
5.
J Cardiovasc Dev Dis ; 10(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103040

RESUMO

Adult hearts are characterized by inefficient regeneration after injury, thus, the features that support or prevent cardiomyocyte (CM) proliferation are important to clarify. Diploid CMs are a candidate cell type that may have unique proliferative and regenerative competence, but no molecular markers are yet known that selectively identify all or subpopulations of diploid CMs. Here, using the conduction system expression marker Cntn2-GFP and the conduction system lineage marker Etv1CreERT2, we demonstrate that Purkinje CMs that comprise the adult ventricular conduction system are disproportionately diploid (33%, vs. 4% of bulk ventricular CMs). These, however, represent only a small proportion (3%) of the total diploid CM population. Using EdU incorporation during the first postnatal week, we demonstrate that bulk diploid CMs found in the later heart enter and complete the cell cycle during the neonatal period. In contrast, a significant fraction of conduction CMs persist as diploid cells from fetal life and avoid neonatal cell cycle activity. Despite their high degree of diploidy, the Purkinje lineage had no enhanced competence to support regeneration after adult heart infarction.

6.
Circ Arrhythm Electrophysiol ; 16(1): e011466, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595632

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) are at increased risk of developing cardiac arrhythmogenesis and sudden cardiac death; however, the basis for this association is incompletely known. METHODS: Here, using murine models of CKD, we examined interactions between kidney disease progression and structural, electrophysiological, and molecular cardiac remodeling. RESULTS: C57BL/6 mice with adenine supplemented in their diet developed progressive CKD. Electrocardiographically, CKD mice developed significant QT prolongation and episodes of bradycardia. Optical mapping of isolated-perfused hearts using voltage-sensitive dyes revealed significant prolongation of action potential duration with no change in epicardial conduction velocity. Patch-clamp studies of isolated ventricular cardiomyocytes revealed changes in sodium and potassium currents consistent with action potential duration prolongation. Global transcriptional profiling identified dysregulated expression of cellular stress response proteins RBM3 (RNA-binding motif protein 3) and CIRP (cold-inducible RNA-binding protein) that may underlay the ion channel remodeling. Unexpectedly, we found that female sex is a protective factor in the progression of CKD and its cardiac sequelae. CONCLUSIONS: Our data provide novel insights into the association between CKD and pathologic proarrhythmic cardiac remodeling. Cardiac cellular stress response pathways represent potential targets for pharmacologic intervention for CKD-induced heart rhythm disorders.


Assuntos
Insuficiência Renal Crônica , Remodelação Ventricular , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Modelos Animais de Doenças , Proteínas de Ligação a RNA/metabolismo
7.
Heart Lung ; 58: 1-5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36334466

RESUMO

BACKGROUND: Male sex, elevated troponin levels, and elevated D-dimer levels are associated with more complicated COVID-19 illness and greater mortality; however, while there are known sex differences in the prognostic value of troponin and D-dimer in other disease states, it is unknown whether they exist in the setting of COVID-19. OBJECTIVE: We assessed whether sex modified the relationship between troponin, D-dimer, and severe COVID-19 illness (defined as mechanical ventilation, ICU admission or transfer, discharge to hospice, or death). METHODS: We conducted a retrospective cohort study of patients hospitalized with COVID-19 at a large, academic health system. We used multivariable regression to assess associations between sex, troponin, D-dimer, and severe COVID-19 illness, adjusting for demographic, clinical, and laboratory covariates. To test whether sex modified the relationship between severe COVID-19 illness and troponin or D-dimer, models with interaction terms were utilized. RESULTS: Among 4,574 patients hospitalized with COVID-19, male sex was associated with higher levels of troponin and greater odds of severe COVID-19 illness, but lower levels of initial D-dimer when compared with female sex. While sex did not modify the relationship between troponin level and severe COVID-19 illness, peak D-dimer level was more strongly associated with severe COVID-19 illness in male patients compared to female patients (males: OR=2.91, 95%CI=2.63-2.34, p<0.001; females: OR=2.31, 95%CI=2.04-2.63, p<0.001; p-interaction=0.005). CONCLUSION: Sex did not modify the association between troponin level and severe COVID-19 illness, but did modify the association between peak D-dimer and severe COVID-19 illness, suggesting greater prognostic value for D-dimer in males with COVID-19.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , Prognóstico , Troponina , Estudos Retrospectivos , Caracteres Sexuais
9.
J Mol Cell Cardiol ; 169: 28-40, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533732

RESUMO

A premature truncation of MYBPHL in humans and a loss of Mybphl in mice is associated with dilated cardiomyopathy, atrial and ventricular arrhythmias, and atrial enlargement. MYBPHL encodes myosin binding protein H-like (MyBP-HL). Prior work in mice indirectly identified Mybphl expression in the atria and in small puncta throughout the ventricle. Because of its genetic association with human and mouse cardiac conduction system disease, we evaluated the anatomical localization of MyBP-HL and the consequences of loss of MyBP-HL on conduction system function. Immunofluorescence microscopy of normal adult mouse ventricles identified MyBP-HL-positive ventricular cardiomyocytes that co-localized with the ventricular conduction system marker contactin-2 near the atrioventricular node and in a subset of Purkinje fibers. Mybphl heterozygous ventricles had a marked reduction of MyBP-HL-positive cells compared to controls. Lightsheet microscopy of normal perinatal day 5 mouse hearts showed enrichment of MyBP-HL-positive cells within and immediately adjacent to the contactin-2-positive ventricular conduction system, but this association was not apparent in Mybphl heterozygous hearts. Surface telemetry of Mybphl-null mice revealed atrioventricular block and atrial bigeminy, while intracardiac pacing revealed a shorter atrial relative refractory period and atrial tachycardia. Calcium transient analysis of isolated Mybphl-null atrial cardiomyocytes demonstrated an increased heterogeneity of calcium release and faster rates of calcium release compared to wild type controls. Super-resolution microscopy of Mybphl heterozygous and homozygous null atrial cardiomyocytes showed ryanodine receptor disorganization compared to wild type controls. Abnormal calcium release, shorter atrial refractory period, and atrial dilation seen in Mybphl null, but not wild type control hearts, agree with the observed atrial arrhythmias, bigeminy, and atrial tachycardia, whereas the proximity of MyBP-HL-positive cells with the ventricular conduction system provides insight into how a predominantly atrial expressed gene contributes to ventricular arrhythmias and ventricular dysfunction.


Assuntos
Arritmias Cardíacas , Cálcio , Doença do Sistema de Condução Cardíaco , Proteínas do Citoesqueleto , Animais , Humanos , Camundongos , Arritmias Cardíacas/genética , Cálcio/metabolismo , Doença do Sistema de Condução Cardíaco/genética , Contactinas/metabolismo , Proteínas do Citoesqueleto/genética , Átrios do Coração/metabolismo , Miosinas/metabolismo , Ramos Subendocárdicos , Taquicardia
10.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990403

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes. Total loss of calsequestrin in the heart causes a severe CPVT phenotype in mice and humans. We found that loss of calsequestrin only in ventricular myocytes produced a full-blown CPVT phenotype, whereas mice with loss of calsequestrin only in Purkinje cells were comparable to WT mice. Subendocardial chemical ablation or restoration of calsequestrin expression in subendocardial cardiomyocytes neighboring Purkinje cells was sufficient to protect against catecholamine-induced arrhythmias. In silico modeling demonstrated that DADs in ventricular myocardium can trigger full action potentials in the Purkinje fiber, but not vice versa. Hence, ectopic beats in CPVT are likely generated at the Purkinje-myocardial junction via a heretofore unrecognized tissue mechanism, whereby DADs in the ventricular myocardium trigger full action potentials in adjacent Purkinje cells.


Assuntos
Calsequestrina/genética , Regulação da Expressão Gênica , Frequência Cardíaca/fisiologia , Células de Purkinje/patologia , RNA/genética , Taquicardia Ventricular/diagnóstico , Animais , Calsequestrina/biossíntese , Linhagem Celular , Modelos Animais de Doenças , Camundongos Knockout , Células de Purkinje/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia
11.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100064

RESUMO

The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.


Assuntos
Ventrículos do Coração/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese/fisiologia , Molécula de Adesão de Leucócito Ativado , Animais , Moléculas de Adesão Celular/metabolismo , Contactina 2/metabolismo , Expressão Gênica , Coração , Sistema de Condução Cardíaco/metabolismo , Camundongos , Camundongos Knockout , Ácidos Siálicos , Sialiltransferases
12.
Epilepsia ; 62(7): 1546-1558, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33982289

RESUMO

OBJECTIVE: Fibroblast growth factor homologous factors (FHFs) are brain and cardiac sodium channel-binding proteins that modulate channel density and inactivation gating. A recurrent de novo gain-of-function missense mutation in the FHF1(FGF12) gene (p.Arg52His) is associated with early infantile epileptic encephalopathy 47 (EIEE47; Online Mendelian Inheritance in Man database 617166). To determine whether the FHF1 missense mutation is sufficient to cause EIEE and to establish an animal model for EIEE47, we sought to engineer this mutation into mice. METHODS: The Arg52His mutation was introduced into fertilized eggs by CRISPR (clustered regularly interspaced short palindromic repeats) editing to generate Fhf1R52H/F+ mice. Spontaneous epileptiform events in Fhf1R52H/+ mice were assessed by cortical electroencephalography (EEG) and video monitoring. Basal heart rhythm and seizure-induced arrhythmia were recorded by electrocardiography. Modulation of cardiac sodium channel inactivation by FHF1BR52H protein was assayed by voltage-clamp recordings of FHF-deficient mouse cardiomyocytes infected with adenoviruses expressing wild-type FHF1B or FHF1BR52H protein. RESULTS: All Fhf1R52H/+ mice experienced seizure or seizurelike episodes with lethal ending between 12 and 26 days of age. EEG recordings in 19-20-day-old mice confirmed sudden unexpected death in epilepsy (SUDEP) as severe tonic seizures immediately preceding loss of brain activity and death. Within 2-53 s after lethal seizure onset, heart rate abruptly declined from 572 ± 16 bpm to 108 ± 15 bpm, suggesting a parasympathetic surge accompanying seizures that may have contributed to SUDEP. Although ectopic overexpression of FHF1BR52H in cardiomyocytes induced a 15-mV depolarizing shift in voltage of steady-state sodium channel inactivation and slowed the rate of channel inactivation, heart rhythm was normal in Fhf1R52H/+ mice prior to seizure. SIGNIFICANCE: The Fhf1 missense mutation p.Arg52His induces epileptic encephalopathy with full penetrance in mice. Both Fhf1 (p.Arg52His) and Scn8a (p.Asn1768Asp) missense mutations enhance sodium channel Nav 1.6 currents and induce SUDEP with bradycardia in mice, suggesting an FHF1/Nav 1.6 functional axis underlying altered brain sodium channel gating in epileptic encephalopathy.


Assuntos
Arritmias Cardíacas/genética , Fatores de Crescimento de Fibroblastos/genética , Espasmos Infantis/genética , Morte Súbita Inesperada na Epilepsia , Idade de Início , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/etiologia , Sistemas CRISPR-Cas , Eletrocardiografia , Eletroencefalografia , Epilepsia Tônico-Clônica/genética , Genótipo , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Oligonucleotídeos , Convulsões/etiologia , Convulsões/genética , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32763851

RESUMO

The rodent heart is frequently used to study human cardiovascular disease (CVD). Although advanced cardiovascular ultrasound imaging methods are available for human clinical practice, application of these techniques to small animals remains limited due to the temporal and spatial-resolution demands. Here, an ultrasound vector-flow workflow is demonstrated that enables visualization and quantification of the complex hemodynamics within the mouse heart. Wild type (WT) and fibroblast growth factor homologous factor 2 (FHF2)-deficient mice (Fhf2 KO/Y ), which present with hyperthermia-induced ECG abnormalities highly reminiscent of Brugada syndrome, were used as a mouse model of human CVD. An 18-MHz linear array was used to acquire high-speed (30 kHz), plane-wave data of the left ventricle (LV) while increasing core body temperature up to 41.5 °C. Hexplex (i.e., six output) processing of the raw data sets produced the output of vector-flow estimates (magnitude and phase); B-mode and color-Doppler images; Doppler spectrograms; and local time histories of vorticity and pericardium motion. Fhf2 WT/Y mice had repeatable beat-to-beat cardiac function, including vortex formation during diastole, at all temperatures. In contrast, Fhf2 KO/Y mice displayed dyssynchronous contractile motion that disrupted normal inflow vortex formation and impaired LV filling as temperature rose. The hexplex processing approach demonstrates the ability to visualize and quantify the interplay between hemodynamic and mechanical function in a mouse model of human CVD.


Assuntos
Ventrículos do Coração , Hemodinâmica , Animais , Velocidade do Fluxo Sanguíneo , Diástole , Ventrículos do Coração/diagnóstico por imagem , Camundongos , Pericárdio , Ultrassonografia , Função Ventricular Esquerda
16.
Circ Res ; 127(12): 1536-1548, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32962518

RESUMO

RATIONALE: FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (NaV) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Nav availability in Fhf2 knockout (Fhf2KO) mice predisposes to abnormal excitability at the tissue level are not well defined. OBJECTIVE: Using animal models and theoretical multicellular linear strands, we examined how FHF2 orchestrates the interdependency of sodium, calcium, and gap junctional conductances to safeguard cardiac conduction. METHODS AND RESULTS: Fhf2KO mice were challenged by reducing calcium conductance (gCaV) using verapamil or by reducing gap junctional conductance (Gj) using carbenoxolone or by backcrossing into a cardiomyocyte-specific Cx43 (connexin 43) heterozygous background. All conditions produced conduction block in Fhf2KO mice, with Fhf2 wild-type (Fhf2WT) mice showing normal impulse propagation. To explore the ionic mechanisms of block in Fhf2KO hearts, multicellular linear strand models incorporating FHF2-deficient Nav inactivation properties were constructed and faithfully recapitulated conduction abnormalities seen in mutant hearts. The mechanisms of conduction block in mutant strands with reduced gCaV or diminished Gj are very different. Enhanced Nav inactivation due to FHF2 deficiency shifts dependence onto calcium current (ICa) to sustain electrotonic driving force, axial current flow, and action potential (AP) generation from cell-to-cell. In the setting of diminished Gj, slower charging time from upstream cells conspires with accelerated Nav inactivation in mutant strands to prevent sufficient downstream cell charging for AP propagation. CONCLUSIONS: FHF2-dependent effects on Nav inactivation ensure adequate sodium current (INa) reserve to safeguard against numerous threats to reliable cardiac impulse propagation.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Simulação por Computador , Conexina 43/genética , Conexina 43/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Junções Comunicantes/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Cardiovasculares , Fenótipo
18.
Trans Am Clin Climatol Assoc ; 131: 48-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32675842

RESUMO

The cardiac conduction system (VCS) is essential for normal myocardial excitation and contraction. Heritable and acquired syndromes perturbing conduction system formation or function are responsible for a substantial burden of cardiovascular disease, including heart block, triggered and reentrant arrhythmias, sudden cardiac death, myocardial dyssynchrony, and progression of heart failure. Our laboratory has employed stem cell models, genetically encoded conduction system reporter mice, comparative transcriptional profiling, and a battery of functional assays to elucidate the molecular determinants of conduction system development, physiology, and disease pathogenesis. Through these strategies, we have uncovered a diversity of novel conduction system-enriched genes, including transcription factors, receptors, and signaling molecules that modulate conduction system physiology. Our long-term goals are to leverage these discoveries for therapeutic impact and to diminish the burden of diseases resulting from abnormal cardiac rhythmicity.

19.
Arterioscler Thromb Vasc Biol ; 40(9): 2045-2053, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687400

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented challenge and opportunity for translational investigators to rapidly develop safe and effective therapeutic interventions. Greater risk of severe disease in COVID-19 patients with comorbid diabetes mellitus, obesity, and heart disease may be attributable to synergistic activation of vascular inflammation pathways associated with both COVID-19 and cardiometabolic disease. This mechanistic link provides a scientific framework for translational studies of drugs developed for treatment of cardiometabolic disease as novel therapeutic interventions to mitigate inflammation and improve outcomes in patients with COVID-19.


Assuntos
Betacoronavirus , Doenças Cardiovasculares/epidemiologia , Infecções por Coronavirus/epidemiologia , Inflamação/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , COVID-19 , Sistema Cardiovascular , Comorbidade , Humanos , Fatores de Risco , SARS-CoV-2
20.
N Engl J Med ; 382(25): 2441-2448, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32356628

RESUMO

BACKGROUND: There is concern about the potential of an increased risk related to medications that act on the renin-angiotensin-aldosterone system in patients exposed to coronavirus disease 2019 (Covid-19), because the viral receptor is angiotensin-converting enzyme 2 (ACE2). METHODS: We assessed the relation between previous treatment with ACE inhibitors, angiotensin-receptor blockers, beta-blockers, calcium-channel blockers, or thiazide diuretics and the likelihood of a positive or negative result on Covid-19 testing as well as the likelihood of severe illness (defined as intensive care, mechanical ventilation, or death) among patients who tested positive. Using Bayesian methods, we compared outcomes in patients who had been treated with these medications and in untreated patients, overall and in those with hypertension, after propensity-score matching for receipt of each medication class. A difference of at least 10 percentage points was prespecified as a substantial difference. RESULTS: Among 12,594 patients who were tested for Covid-19, a total of 5894 (46.8%) were positive; 1002 of these patients (17.0%) had severe illness. A history of hypertension was present in 4357 patients (34.6%), among whom 2573 (59.1%) had a positive test; 634 of these patients (24.6%) had severe illness. There was no association between any single medication class and an increased likelihood of a positive test. None of the medications examined was associated with a substantial increase in the risk of severe illness among patients who tested positive. CONCLUSIONS: We found no substantial increase in the likelihood of a positive test for Covid-19 or in the risk of severe Covid-19 among patients who tested positive in association with five common classes of antihypertensive medications.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Inibidores de Simportadores de Cloreto de Sódio/administração & dosagem , Antagonistas Adrenérgicos beta/efeitos adversos , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/efeitos adversos , Teorema de Bayes , Betacoronavirus , COVID-19 , Bloqueadores dos Canais de Cálcio/efeitos adversos , Feminino , Humanos , Hipertensão/complicações , Masculino , Pessoa de Meia-Idade , New York , Pandemias , Pontuação de Propensão , Sistema Renina-Angiotensina/efeitos dos fármacos , Fatores de Risco , SARS-CoV-2 , Inibidores de Simportadores de Cloreto de Sódio/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA