Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
iScience ; 27(1): 108477, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205261

RESUMO

Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259406

RESUMO

Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action.

3.
RSC Med Chem ; 13(7): 831-839, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919336

RESUMO

By 2050, it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, more deaths than cancer, costing the world economy $100 trillion. Clearly, strategies to address this problem are essential as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy. As this site is distinct from the fluoroquinolone binding site, resistance is not yet documented. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by a published thiophene-based allosteric inhibitor. This series was evaluated in vitro against Escherichia coli DNA gyrase and E. coli topoisomerase IV with the most potent compounds exhibiting IC50 values towards the low micromolar range for DNA gyrase and only ∼2-fold less active against topoisomerase IV. The structure-activity relationships reported herein suggest insights to further exploit this allosteric site, offering a pathway to overcome developing fluoroquinolone resistance.

4.
RSC Med Chem ; 13(4): 360-374, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35647546

RESUMO

The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are dimeric disulfide-linked receptor tyrosine kinases, whose actions regulate metabolic and mitogenic signalling pathways inside the cell. It is well documented that in tissues co-expressing the IR and IGF1R, their respective monomers can heterodimerise to form IR-IGF1R hybrid receptors. Increased populations of the IR-IGF1R hybrid receptors are associated with several disease states, including type 2 diabetes and cancer. Recently, progress in the structural biology of IR and IGF1R has given insights into their structure-function relationships and mechanism of action. However, challenges in isolating IR-IGF1R hybrid receptors mean that their structural properties remain relatively unexplored. This review discusses the advances in the structural understanding of the IR and IGF1R, and how these discoveries can inform the design of small-molecule modulators of the IR-IGF1R hybrid receptors to understand their role in cell biology.

5.
J Med Chem ; 65(2): 1481-1504, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34780700

RESUMO

Fibroblast growth factor receptors (FGFRs) are implicated in a range of cancers with several pan-kinase and selective-FGFR inhibitors currently being evaluated in clinical trials. Pan-FGFR inhibitors often cause toxic side effects and few examples of subtype-selective inhibitors exist. Herein, we describe a structure-guided approach toward the development of a selective FGFR2 inhibitor. De novo design was carried out on an existing fragment series to yield compounds predicted to improve potency against the FGFRs. Subsequent iterative rounds of synthesis and biological evaluation led to an inhibitor with nanomolar potency that exhibited moderate selectivity for FGFR2 over FGFR1/3. Subtle changes to the lead inhibitor resulted in a complete loss of selectivity for FGFR2. X-ray crystallographic studies revealed inhibitor-specific morphological differences in the P-loop which were posited to be fundamental to the selectivity of these compounds. Additional docking studies have predicted an FGFR2-selective H-bond which could be utilized to design more selective FGFR2 inhibitors.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proliferação de Células , Humanos , Fosforilação , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/enzimologia
6.
Haematologica ; 106(6): 1616-1623, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354869

RESUMO

Complement C3 binds fibrinogen and compromises fibrin clot lysis thereby enhancing thrombosis risk. We investigated the role of fibrinogen-C3 interaction as a novel therapeutic target to reduce thrombosis risk by analysing: i) consistency in the fibrinolytic properties of C3, ii) binding sites between fibrinogen and C3 and iii) modulation of fibrin clot lysis by manipulating fibrinogen-C3 interactions. Purified fibrinogen and C3 from the same individuals (n=24) were used to assess inter-individual variability in the anti-fibrinolytic effects of C3. Microarray screening and molecular modelling evaluated C3 and fibrinogen interaction sites. Novel synthetic conformational proteins, termed Affimers, were used to modulate C3-fibrinogen interaction and fibrinolysis. C3 purified from patients with type 1 diabetes showed enhanced prolongation of fibrinolysis compared with healthy control protein [195±105 and 522±166 seconds, respectively (p=0.04)], with consistent effects but a wider range (5-51% and 5-18% lysis prolongation, respectively). Peptide microarray screening identified 2 potential C3-fibrinogen interactions sites within fibrinogen ß chain (residues 424-433, 435-445). One fibrinogen-binding Affimer was isolated that displayed sequence identity with C3 in an exposed area of the protein. This Affimer abolished C3-induced prolongation of fibrinolysis (728±25.1 seconds to 632±23.7 seconds, p=0.005) and showed binding to fibrinogen in the same region that is involved in C3-fibrinogen interactions. Moreover, it shortened plasma clot lysis of patients with diabetes, cardiovascular disease or controls by 7-11%. C3 binds fibrinogen ß-chain and disruption of fibrinogen-C3 interaction using Affimer proteins enhances fibrinolysis, which represents a potential novel target tool to reduce thrombosis in high risk individuals.


Assuntos
Fibrinogênio , Trombose , Complemento C3 , Fibrina , Fibrinólise , Humanos , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/prevenção & controle
7.
Artigo em Inglês | MEDLINE | ID: mdl-32626661

RESUMO

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Camundongos , Plasmodium falciparum
8.
Biomolecules ; 10(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545682

RESUMO

Resistance to ß-lactam antibacterials, importantly via production of ß-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) ß-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections. We report kinetic and crystallographic studies on the inhibition of AmpC, the class C ß­lactamase from Escherichia coli, by bicyclic boronates, including taniborbactam, with different C-3 side chains. The combined studies reveal that an acylamino side chain is not essential for potent AmpC inhibition by active site binding bicyclic boronates. The tricyclic form of taniborbactam was observed bound to the surface of crystalline AmpC, but not at the active site, where the bicyclic form was observed. Structural comparisons reveal insights into why active site binding of a tricyclic form has been observed with the NDM-1 MBL, but not with other studied ß-lactamases. Together with reported studies on the structural basis of inhibition of class A, B and D ß­lactamases, our data support the proposal that bicyclic boronates are broad-spectrum ß­lactamase inhibitors that work by mimicking a high energy 'tetrahedral' intermediate. These results suggest further SAR guided development could improve the breadth of clinically useful ß-lactamase inhibition.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Ácidos Borônicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Antibacterianos , Proteínas de Bactérias/genética , Ácidos Borônicos/química , Cristalografia por Raios X , Ciclização , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/classificação , beta-Lactamases/genética
9.
iScience ; 23(5): 101100, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32408169

RESUMO

Drug-resistant epileptic encephalopathies of infancy have been associated with KCNT1 gain-of-function mutations, which increase the activity of KNa1.1 sodium-activated potassium channels. Pharmacological inhibition of hyperactive KNa1.1 channels by quinidine has been proposed as a stratified treatment, but mostly this has not been successful, being linked to the low potency and lack of specificity of the drug. Here we describe the use of a previously determined cryo-electron microscopy-derived KNa1.1 structure and mutational analysis to identify how quinidine binds to the channel pore and, using computational methods, screened for compounds predicated to bind to this site. We describe six compounds that inhibited KNa1.1 channels with low- and sub-micromolar potencies, likely also through binding in the intracellular pore vestibule. In hERG inhibition and cytotoxicity assays, two compounds were ineffective. These may provide starting points for the development of new pharmacophores and could become tool compounds to study this channel further.

10.
ACS Med Chem Lett ; 11(4): 605-610, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292570

RESUMO

Membrane-bound pyrophosphatases (mPPases) regulate energy homeostasis in pathogenic protozoan parasites and lack human homologues, which makes them promising targets in e.g. malaria. Yet only few nonphosphorus inhibitors have been reported so far. Here, we explore an isoxazole fragment hit, leading to the discovery of small mPPase inhibitors with 6-10 µM IC50 values in the Thermotoga maritima test system. Promisingly, the compounds retained activity against Plasmodium falciparum mPPase in membranes and inhibited parasite growth.

11.
J Med Chem ; 62(21): 9703-9717, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31626547

RESUMO

Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high-resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-tRNA synthetases with greater than 2 orders of magnitude compared to their human homologue, demonstrating a route to the selective chemical inhibition of these bacterial targets.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Sondas Moleculares/química , Serina-tRNA Ligase/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Estrutura Molecular , Serina-tRNA Ligase/química
12.
Bioorg Med Chem ; 27(16): 3546-3550, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257079

RESUMO

Previously we have reported on a series of pyridine-3-carboxamide inhibitors of DNA gyrase and DNA topoisomerase IV that were designed using a computational de novo design approach and which showed promising antibacterial properties. Herein we describe the synthesis of additional examples from this series aimed specifically at DNA gyrase, along with crystal structures confirming the predicted mode of binding and in vitro ADME data which describe the drug-likeness of these compounds.


Assuntos
DNA Girase/genética , Escherichia coli/metabolismo , Inibidores da Topoisomerase II/uso terapêutico , Modelos Moleculares , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
13.
Biochim Biophys Acta Gen Subj ; 1863(4): 742-748, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30738906

RESUMO

BACKGROUND: The ß-lactam antibiotics represent the most successful drug class for treatment of bacterial infections. Resistance to them, importantly via production of ß-lactamases, which collectively are able to hydrolyse all classes of ß-lactams, threatens their continued widespread use. Bicyclic boronates show potential as broad spectrum inhibitors of the mechanistically distinct serine- (SBL) and metallo- (MBL) ß-lactamase families. METHODS: Using biophysical methods, including crystallographic analysis, we have investigated the binding mode of bicyclic boronates to clinically important ß-lactamases. Induction experiments and agar-based MIC screening against MDR-Enterobacteriaceae (n = 132) were used to evaluate induction properties and the in vitro efficacy of a bicyclic boronate in combination with meropenem. RESULTS: Crystallographic analysis of a bicyclic boronate in complex with AmpC from Pseudomonas aeruginosa reveals it binds to form a tetrahedral boronate species. Microbiological studies on the clinical coverage (in combination with meropenem) and induction of ß-lactamases by bicyclic boronates further support the promise of such compounds as broad spectrum ß-lactamase inhibitors. CONCLUSIONS: Together with reported studies on the structural basis of their inhibition of class A, B and D ß-lactamases, biophysical studies, including crystallographic analysis, support the proposal that bicyclic boronates mimic tetrahedral intermediates common to SBL and MBL catalysis. GENERAL SIGNIFICANCE: Bicyclic boronates are a new generation of broad spectrum inhibitors of both SBLs and MBLs.


Assuntos
Antibacterianos/farmacologia , Ácidos Borônicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/química , Ácidos Borônicos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/enzimologia , Inibidores de beta-Lactamases/química
14.
Chem Sci ; 9(42): 8150-8159, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30542566

RESUMO

Cyclotriguaiacylene has been functionalised with 3- or 4-pyridyl-azo-phenyl groups to form a series of molecular hosts with three azobenzene-type groups that exhibit reversible photo-isomerisation. Reaction of the host molecules with [Ir(C^N)2(NCMe)2]+ where C^N is the cyclometallating 2-phenylpyridinato, 2-(4-methylphenyl)pyridinato or 2-(4,5,6-trifluorophenyl)pyridinato results in the self-assembly of a family of five different [{Ir(C^N)2}3(L)2]3+ coordination cages. Photo-irradiation of each of the cages with a high energy laser results in E → Z photo-isomerisation of the pyridyl-azo-phenyl groups with up to 40% of groups isomerising. Isomerisation can be reversed by exposure to blue light. Thus, the cages show reversible structure-switching while maintaining their compositional integrity. This represents the largest photo-induced structural change yet reported for a structurally-integral component of a coordination cage. Energy minimised molecular models indicate a switched cage has a smaller internal space than the initial all-E isomer. The [Ir(C^N)2(NCMe)2]+ cages are weakly emissive, each with a deep blue luminescence at ca. 450 nm.

15.
Artigo em Inglês | MEDLINE | ID: mdl-30345257

RESUMO

Toxoplasma gondii, an Apicomplexan parasite, causes significant morbidity and mortality, including severe disease in immunocompromised hosts and devastating congenital disease, with no effective treatment for the bradyzoite stage. To address this, we used the Tropical Disease Research database, crystallography, molecular modeling, and antisense to identify and characterize a range of potential therapeutic targets for toxoplasmosis. Phosphoglycerate mutase II (PGMII), nucleoside diphosphate kinase (NDK), ribulose phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), and ornithine aminotransferase (OAT) were structurally characterized. Crystallography revealed insights into the overall structure, protein oligomeric states and molecular details of active sites important for ligand recognition. Literature and molecular modeling suggested potential inhibitors and druggability. The targets were further studied with vivoPMO to interrupt enzyme synthesis, identifying the targets as potentially important to parasitic replication and, therefore, of therapeutic interest. Targeted vivoPMO resulted in statistically significant perturbation of parasite replication without concomitant host cell toxicity, consistent with a previous CRISPR/Cas9 screen showing PGM, RPE, and RPI contribute to parasite fitness. PGM, RPE, and RPI have the greatest promise for affecting replication in tachyzoites. These targets are shared between other medically important parasites and may have wider therapeutic potential.


Assuntos
Enzimas/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Cristalografia por Raios X , Enzimas/química , Enzimas/genética , Técnicas de Silenciamento de Genes , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/crescimento & desenvolvimento
16.
IUCrJ ; 5(Pt 2): 200-210, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765610

RESUMO

Cytochrome bc1, a dimeric multi-subunit electron-transport protein embedded in the inner mitochondrial membrane, is a major drug target for the treatment and prevention of malaria and toxoplasmosis. Structural studies of cytochrome bc1 from mammalian homologues co-crystallized with lead compounds have underpinned structure-based drug design to develop compounds with higher potency and selectivity. However, owing to the limited amount of cytochrome bc1 that may be available from parasites, all efforts have been focused on homologous cytochrome bc1 complexes from mammalian species, which has resulted in the failure of some drug candidates owing to toxicity in the host. Crystallographic studies of the native parasite proteins are not feasible owing to limited availability of the proteins. Here, it is demonstrated that cytochrome bc1 is highly amenable to single-particle cryo-EM (which uses significantly less protein) by solving the apo and two inhibitor-bound structures to ∼4.1 Šresolution, revealing clear inhibitor density at the binding site. Therefore, cryo-EM is proposed as a viable alternative method for structure-based drug discovery using both host and parasite enzymes.

17.
J Med Chem ; 61(3): 1255-1260, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29271657

RESUMO

Zinc ion-dependent ß-lactamases (MBLs) catalyze the hydrolysis of almost all ß-lactam antibiotics and resist the action of clinically available ß-lactamase inhibitors. We report how application of in silico fragment-based molecular design employing thiol-mediated metal anchorage leads to potent MBL inhibitors. The new inhibitors manifest potent inhibition of clinically important B1 subfamily MBLs, including the widespread NDM-1, IMP-1, and VIM-2 enzymes; with lower potency, some of them also inhibit clinically relevant Class A and D serine-ß-lactamases. The inhibitors show selectivity for bacterial MBL enzymes compared to that for human MBL fold nucleases. Cocrystallization of one inhibitor, which shows potentiation of Meropenem activity against MBL-expressing Enterobacteriaceae, with VIM-2 reveals an unexpected binding mode, involving interactions with residues from conserved active site bordering loops.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Simulação por Computador , Desenho de Fármacos , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , beta-Lactamases/química
18.
Proc Natl Acad Sci U S A ; 115(1): E72-E81, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247053

RESUMO

Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.


Assuntos
Complexo Antígeno-Anticorpo/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Receptores de IgG/química , Regulação Alostérica , Complexo Antígeno-Anticorpo/imunologia , Humanos , Imunoglobulina G/imunologia , Receptores de IgG/imunologia
19.
Nat Commun ; 8(1): 1939, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208891

RESUMO

D-cycloserine is an antibiotic which targets sequential bacterial cell wall peptidoglycan biosynthesis enzymes: alanine racemase and D-alanine:D-alanine ligase. By a combination of structural, chemical and mechanistic studies here we show that the inhibition of D-alanine:D-alanine ligase by the antibiotic D-cycloserine proceeds via a distinct phosphorylated form of the drug. This mechanistic insight reveals a bimodal mechanism of action for a single antibiotic on different enzyme targets and has significance for the design of future inhibitor molecules based on this chemical structure.


Assuntos
Antibióticos Antituberculose/farmacologia , Ciclosserina/farmacologia , Peptídeo Sintases/antagonistas & inibidores , Alanina Racemase , Antibióticos Antituberculose/metabolismo , Ciclosserina/metabolismo , Escherichia coli , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/efeitos dos fármacos , Peptídeo Sintases/efeitos dos fármacos , Fosforilação
20.
ACS Med Chem Lett ; 8(12): 1264-1268, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29259745

RESUMO

Structure-based drug design (SBDD) has become a powerful tool utilized by medicinal chemists to rationally guide the drug discovery process. Herein, we describe the use of SPROUT, a de novo-based program, to identify an indazole-based pharmacophore for the inhibition of fibroblast growth factor receptor (FGFR) kinases, which are validated targets for cancer therapy. Hit identification using SPROUT yielded 6-phenylindole as a small fragment predicted to bind to FGFR1. With the aid of docking models, several modifications to the indole were made to optimize the fragment to an indazole-containing pharmacophore, leading to a library of compounds containing 23 derivatives. Biological evaluation revealed that these indazole-containing fragments inhibited FGFR1-3 in the range of 0.8-90 µM with excellent ligand efficiencies of 0.30-0.48. Some compounds exhibited moderate selectivity toward individual FGFRs, indicating that further optimization using SBDD may lead to potent and selective inhibitors of the FGFR family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA