Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114563

RESUMO

Rising winter air temperature will reduce snow depth and duration over the next century in northern hardwood forests. Reductions in snow depth may affect soil bacteria and fungi directly, but also affect soil microbes indirectly through effects of snowpack loss on plant roots. We incubated root exclusion and root ingrowth cores across a winter climate-elevation gradient in a northern hardwood forest for 29 months to identify direct (i.e., winter snow-mediated) and indirect (i.e., root-mediated) effects of winter snowpack decline on soil bacterial and fungal communities, as well as on potential nitrification and net N mineralization rates. Both winter snowpack decline and root exclusion increased bacterial richness and phylogenetic diversity. Variation in bacterial community composition was best explained by differences in winter snow depth or soil frost across elevation. Root ingrowth had a positive effect on the relative abundance of several bacterial taxonomic orders (e.g., Acidobacterales and Actinomycetales). Nominally saprotrophic (e.g., Saccharomycetales and Mucorales) or mycorrhizal (e.g., Helotiales, Russalales, Thelephorales) fungal taxonomic orders were also affected by both root ingrowth and snow depth variation. However, when grouped together, the relative abundance of saprotrophic fungi, arbuscular mycorrhizal fungi, and ectomycorrhizal fungi were not affected by root ingrowth or snow depth, suggesting that traits in addition to trophic mode will mediate fungal community responses to snowpack decline in northern hardwood forests. Potential soil nitrification rates were positively related to ammonia-oxidizing bacteria and archaea abundance (e.g., Nitrospirales, Nitrosomondales, Nitrosphaerales). Rates of N mineralization were positively and negatively correlated with ectomycorrhizal and saprotrophic fungi, respectively, and these relationships were mediated by root exclusion. The results from this study suggest that a declining winter snowpack and its effect on plant roots each have direct effects on the diversity and abundance of soil bacteria and fungal communities that interact to determine rates of soil N cycling in northern hardwood forests.

2.
Ecology ; 99(2): 438-449, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205288

RESUMO

Forest productivity on glacially derived soils with weatherable phosphorus (P) is expected to be limited by nitrogen (N), according to theories of long-term ecosystem development. However, recent studies and model simulations based on resource optimization theory indicate that productivity can be co-limited by N and P. We conducted a full factorial N × P fertilization experiment in 13 northern hardwood forest stands of three age classes in central New Hampshire, USA, to test the hypothesis that forest productivity is co-limited by N and P. We also asked whether the response of productivity to N and P addition differs among species and whether differential species responses contribute to community-level co-limitation. Plots in each stand were fertilized with 30 kg N·ha-1 ·yr-1 , 10 kg P·ha-1 ·yr-1 , N + P, or neither nutrient (control) for four growing seasons. The productivity response to treatments was assessed using per-tree annual relative basal area increment (RBAI) as an index of growth. RBAI responded significantly to P (P = 0.02) but not to N (P = 0.73). However, evidence for P limitation was not uniform among stands. RBAI responded to P fertilization in mid-age (P = 0.02) and mature (P = 0.07) stands, each taken as a group, but was greatest in N-fertilized plots of two stands in these age classes, and there was no significant effect of P in the young stands. Both white birch (Betula papyrifera Marsh.) and beech (Fagus grandifolia Ehrh.) responded significantly to P; no species responded significantly to N. We did not find evidence for N and P co-limitation of tree growth. The response to N + P did not differ from that to P alone, and there was no significant N × P interaction (P = 0.68). Our P limitation results support neither the N limitation prediction of ecosystem theory nor the N and P co-limitation prediction of resource optimization theory, but could be a consequence of long-term anthropogenic N deposition in these forests. Inconsistencies in response to P suggest that successional status and variation in site conditions influence patterns of nutrient limitation and recycling across the northern hardwood forest landscape.


Assuntos
Ecossistema , Fósforo/análise , Florestas , New Hampshire , Nitrogênio/análise , Solo , Árvores
3.
Ecology ; 97(12): 3359-3368, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912011

RESUMO

Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow- and/or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2 mm pore size) or excluded root ingrowth (50 µm pore size) for up to 29 months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P < 0.05; R2  = 0.25-0.46) than to root biomass, snow or soil frost, or winter soil temperature (R2  < 0.10). Root ingrowth was positively related to soil frost (P < 0.01; R2  = 0.28), suggesting that trees compensate for overwinter root mortality caused by soil freezing by re-allocating resources towards root production. At the sites with the deepest snow cover, root ingrowth reduced nitrification rates by 30% (P < 0.01), showing that tree roots exert significant influence over nitrification, which declines with reduced snow cover. If soil freezing intensifies over time, then greater compensatory root growth may reduce nitrification rates directly via plant-microbe N competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests.


Assuntos
Acer/microbiologia , Florestas , Raízes de Plantas/microbiologia , Neve , Acer/crescimento & desenvolvimento , Nitrificação , Raízes de Plantas/crescimento & desenvolvimento
4.
Front Microbiol ; 7: 2040, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119666

RESUMO

Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.

5.
Ecology ; 96(9): 2488-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594705

RESUMO

Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their. respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P < 0.01) and proficiency (P = 0.01) increased with soil N content. to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain basdd on single-element limitation, butfollows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the 0 horizon: P resorption was high where resin-available P was low in the Oe (P < 0.01 for efficiency, P < 0.001 for proficiency) and N resorption was high where potential N mineralization in the Oa was low (P < 0.01 for efficiency and 0.11 for proficiency). Since leaf litter is a principal source of N and P to the 0 horizon, low nutrient availability there could be a result rather than a cause of high resorption. The striking effect of soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem.


Assuntos
Florestas , Nitrogênio/química , Fósforo/metabolismo , Folhas de Planta/fisiologia , Plantas/metabolismo , Solo/química , Monitoramento Ambiental , Nitrogênio/metabolismo , Fósforo/química , Plantas/classificação , Especificidade da Espécie
6.
Glob Chang Biol ; 20(11): 3568-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24796872

RESUMO

Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.


Assuntos
Biomassa , Mudança Climática , Florestas , Microbiologia do Solo , Clima , New Hampshire , Nitrogênio/metabolismo , Estações do Ano , Neve , Solo/química
7.
Ecol Appl ; 23(5): 1185-201, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23967585

RESUMO

To examine the mechanisms of earthworm effects on forest soil C and N, we double-labeled leaf litter with 13C and 15N, applied it to sugar maple forest plots with and without earthworms, and traced isotopes into soil pools. The experimental design included forest plots with different earthworm community composition (dominated by Lumbricus terrestris or L. rubellus). Soil carbon pools were 37% lower in earthworm-invaded plots largely because of the elimination of the forest floor horizons, and mineral soil C:N was lower in earthworm plots despite the mixing of high C:N organic matter into soil by earthworms. Litter disappearance over the first winter-spring was highest in the L. terrestris (T) plots, but during the warm season, rapid loss of litter was observed in both L. rubellus (R) and T plots. After two years, 22.0% +/- 5.4% of 13C released from litter was recovered in soil with no significant differences among plots. Total recovery of added 13C (decaying litter plus soil) was much higher in no-worm (NW) plots (61-68%) than in R and T plots (20-29%) as much of the litter remained in the former whereas it had disappeared in the latter. Much higher percentage recovery of 15N than 13C was observed, with significantly lower values for T than R and NW plots. Higher overwinter earthworm activity in T plots contributed to lower soil N recovery. In earthworm-invaded plots isotope enrichment was highest in macroaggregates and microaggregates whereas in NW plots silt plus clay fractions were most enriched. The net effect of litter mixing and priming of recalcitrant soil organic matter (SOM), stabilization of SOM in soil aggregates, and alteration of the soil microbial community by earthworm activity results in loss of SOM and lowering of the C:N ratio. We suggest that earthworm stoichiometry plays a fundamental role in regulating C and N dynamics of forest SOM.


Assuntos
Acer , Carbono/química , Nitrogênio/química , Oligoquetos/fisiologia , Árvores/fisiologia , Animais , Carbono/metabolismo , Ecossistema , Monitoramento Ambiental , New York , Nitrogênio/metabolismo , Solo/química , Fatores de Tempo
8.
Ecology ; 92(11): 2035-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22164827

RESUMO

Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.


Assuntos
Cálcio/metabolismo , Ecossistema , Ciclo do Nitrogênio/fisiologia , Nitrogênio/metabolismo , Árvores/metabolismo , Solo/química , Fatores de Tempo
9.
New Phytol ; 157(1): 145-153, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33873698

RESUMO

• Exotic earthworms can modify or eliminate surface organic (Oe/Oa) horizons in cold-temperate forest ecosystems and have profound effects on the forest soil environment, especially the rooting zone. • We examined the effects of earthworm colonization of northern hardwood forest soils on the abundance and morphology of mycorrhizal fungi associated with sugar maple ( Acer saccharum ). We compared mycorrhizal associations of areas of earthworm invasion with those of reference (no-worm) areas in Arnot Forest, central New York, USA. • The organic horizon in reference areas had higher mycorrhizal colonization rates and higher colonized root length than did surface layers in areas with active earthworm populations. Hyphal coils were more abundant and also formed a greater proportion of total fungal colonization in reference plots. Vesicles were more abundant and were a higher contribution to total colonization in earthworm plots, indicating a possible stress response to the presence of earthworms. • By affecting mycorrhizal colonization and morphology, earthworms may influence nutrient uptake capacity of dominant forest species. Our results suggest that a profound change in the mycorrhizal system will be one component of the potential ecosystem effects of invasion of new forest habitat by nonnative earthworms.

10.
Oecologia ; 101(2): 217-227, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28306794

RESUMO

Physiological and growth measurements were made on forbs and graminoids following additions of water and N+water in a graminoid-dominated dry meadow and a forb-dominated moist meadow, to determine if the community-level response was related to differential responses between the growth forms. Graminoids had higher photosynthetic rates and lower transpiration rates and foliar N concentrations than forbs, and consequently maintained higher photosynthetic N- and water-use efficiencies. Photosynthetic rates, stomatal conductance, and transpiration rates increased significantly only in response to N fertilization and only in moist meadow species. The increase in photosynthetic rates was unrelated to variation in foliar N concentration, but instead correlated with variation in stomatal conductance. Growth based N-use efficiency was higher in moist meadow graminoids than in moist meadow forbs, but did not differ between the growth forms in the dry meadow. The moist meadow community had higher biomass and N standing crops, but the relative increase in these factors in response to N fertilization was greater in the dry meadow. Graminoids had a greater relative increase in biomass and N accumulation than forbs following N fertilization, but moist meadow graminoids exhibited a greater response than dry meadow graminoids. The difference in the growth response between the dry meadow and moist meadow graminoids to N fertilization was correlated with more conservative leaf gas exchange responses in dry meadow species, presumably related to a higher frequency of soil water deficits in this community. Community-level response to the resource additions was therefore mediated by the plant growth form response, corresponding with differences between the growth forms in physiological factors related to resource acquisition and use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA