Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Drug Metab Dispos ; 51(6): 753-763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863866

RESUMO

The human pharmacokinetics, metabolism, and excretion of [14C]-ganaxolone (GNX) were characterized in healthy male subjects (n = 8) following a single 300-mg (150 µCi) oral dose. GNX exhibited a short half-life of 4 hours in plasma, whereas total radioactivity had a half-life of 413 hours indicating extensive metabolism to long-lived metabolites. Identification of the major GNX circulating metabolites required extensive isolation and purification for liquid chromatography-tandem mass spectrometry analysis, together with in vitro studies, NMR spectroscopy, and synthetic chemistry support. This revealed that the major routes of GNX metabolism involved hydroxylation at the 16α-hydroxy position, stereoselective reduction of the 20-ketone to afford the corresponding 20α-hydroxysterol, and sulfation of the 3α-hydroxy group. This latter reaction yielded an unstable tertiary sulfate, which eliminated the elements of H2SO4 to introduce a double bond in the A ring. A combination of these pathways, together with oxidation of the 3ß-methyl substituent to a carboxylic acid and sulfation at the 20α position, led to the major circulating metabolites in plasma, termed M2 and M17. These studies, which led to the complete or partial identification of no less than 59 metabolites of GNX, demonstrated the high complexity of the metabolic fate of this drug in humans and demonstrated that the major circulating products in plasma can result from multiple sequential processes that may not be easily replicated in animals or with animal or human in vitro systems. SIGNIFICANCE STATEMENT: Studies on the metabolism of [14C]-ganaxolone in humans revealed a complex array of products that circulated in plasma, the two major components of which were formed via an unexpected multi-step pathway. Complete structural characterization of these (disproportionate) human metabolites required extensive in vitro studies, along with contemporary mass spectrometry, NMR spectroscopy, and synthetic chemistry efforts, which served to underscore the limitations of traditional animal studies in predicting major circulating metabolites in man.


Assuntos
Neuroesteroides , Animais , Humanos , Masculino , Neuroesteroides/análise , Pregnanolona/análise , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Fezes/química
2.
Eur J Med Chem ; 229: 114080, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34992038

RESUMO

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.


Assuntos
Indazóis/síntese química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Animais , Encéfalo , Modelos Animais de Doenças , Descoberta de Drogas , Humanos , Indazóis/farmacocinética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Pulmão , Masculino , Camundongos , Simulação de Acoplamento Molecular , Mutação , Fármacos Neuroprotetores/farmacocinética , Fenótipo , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Roedores , Relação Estrutura-Atividade
3.
J Am Chem Soc ; 141(24): 9474-9478, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31184877

RESUMO

The Lipid A family of glycolipids, found in the outer membranes of all Gram-negative bacteria, exhibits considerable structural diversity in both lipid and glycan moieties. The lack of facile methods to prepare analogues of these natural products represents a major roadblock in understanding the relationship between their structure and immunomodulatory activities. Here we present a modular, cell-free multienzymatic platform to access these structure-activity relationships. By individually purifying 19 Escherichia coli proteins and reconstituting them in vitro in the presence of acetyl-CoA, UDP- N-acetylglucosamine, NADPH, and ATP, we have developed a system capable of synthesizing Lipid IVA, the first bioactive intermediate in the Lipid A pathway. Our reconstituted multienzyme system revealed considerable promiscuity for orthologs with distinct substrate specificity, as illustrated by swapping enzymes from distantly related cyanobacterial and Pseudomonas species. Analysis of the agonistic and antagonistic activities of the resulting products against the THP-1 human monocytic cell line revealed hitherto unrecognized trends, while opening the door to harnessing the potent biological activities of these complex glycolipid natural products.


Assuntos
Anti-Inflamatórios/síntese química , Enzimas/química , Proteínas de Escherichia coli/química , Glicolipídeos/síntese química , Fatores Imunológicos/síntese química , Lipídeo A/análogos & derivados , Anti-Inflamatórios/farmacologia , Linhagem Celular , Escherichia coli/enzimologia , Glicolipídeos/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Lipídeo A/síntese química , Lipídeo A/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
4.
Drug Metab Lett ; 12(2): 93-100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30070179

RESUMO

BACKGROUND: There is a continued need for improvements in the efficiency of metabolite structure elucidation. OBJECTIVE: We propose to take LC Retention Time (RT) into consideration during the process of structure determination. METHODS: Herein, we develop a simple methodology that employs a Chromatographic Hydrophobicity Index (CHI) framework for standardizing LC conditions and introduce and utilize the concept of a predictable CHI change upon Phase 1 biotransformation (CHIbt). Through the analysis of literature examples, we offer a Quantitative Structure-Retention Relationship (QSRR) for several types of biotransformation (especially hydroxylation) using physicochemical properties (clogP, hydrogen bonding). RESULTS: The CHI system for retention indexing is shown to be practical and simple to implement. A database of CHIbt values has been created from re-incubation of 3 compounds and from analysis of an additional 17 datasets from the literature. Application of this database is illustrated. CONCLUSION: In our experience, this simple methodology allows complementing the discovery efforts that saves resources for in-depth characterization using NMR.


Assuntos
Atorvastatina/metabolismo , Carbanilidas/metabolismo , Cromatografia Líquida/métodos , Biotransformação , Desmetilação , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hidroxilação , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Relação Quantitativa Estrutura-Atividade , Fatores de Tempo , Fluxo de Trabalho
5.
Rapid Commun Mass Spectrom ; 32(6): 480-488, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29334584

RESUMO

RATIONALE: A novel benzimidazole compound ZLN005 was previously identified as a transcriptional activator of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in certain metabolic tissues. Upregulation of PGC-1α by ZLN005 has been shown to have a beneficial effect in a diabetic mouse model and in a coronary artery disease model in vitro. ZLN005 could also have therapeutic potential in neurodegenerative diseases involving down-regulation of PGC-1α. Given the phenotypic efficacy of ZLN005 in several animal models of human disease, its metabolic profile was investigated to guide the development of novel therapeutics using ZLN005 as the lead compound. METHODS: ZLN005 was incubated with both rat and human liver microsomes and S9 fractions to identify in vitro metabolites. Urine from rats dosed with ZLN005 was used to identify in vivo metabolites. Extracted metabolites were analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using a hybrid linear ion trap triple quadrupole mass spectrometer in full scan, enhanced product ion scan, neutral loss scan and precursor scan modes. Metabolites in plasma and brain of ZLN005-treated rats were also profiled using multiple reaction monitoring. RESULTS: Identified in vitro transformations of ZLN005 include mono- and dihydroxylation, further oxidation to carboxylic acids, and mono-O-glucuronide and sulfate conjugation to hydroxy ZLN005 as well as glutathione conjugation. Identified in vivo metabolites are mainly glucuronide and sulfate conjugates of dihydroxyl, carboxyl, and hydroxy acid of the parent compound. The parent compound as well as several major phase I metabolites were found in rat plasma and brain. CONCLUSIONS: Using both in vitro and in vivo methods, we elucidated the metabolic pathway of ZLN005. Phase I metabolites with hydroxylation and carboxylation, as well as phase II metabolites with glucuronide, sulfate and glutathione conjugation, were identified.

6.
Anesth Analg ; 125(4): 1192-1199, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28338490

RESUMO

BACKGROUND: In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. METHODS: Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear regression model. Analysis of variance was used to determine whether the absolute log proportional error differed by the intended injection volume. Interindividual and intraindividual deviation from the intended injection volume was also characterized. RESULTS: As the intended injection volumes decreased, the absolute log proportional injection volume error increased (analysis of variance, P < .0018). The exploratory analysis revealed no significant difference in the standard deviations of the log proportional errors for injection volumes between physicians and pediatric PACU nurses; however, the difference in absolute bias was significantly higher for nurses with a 2-sided significance of P = .03. CONCLUSIONS: Clinically significant dose variation occurs when injecting volumes ≤0.5 mL. Administering small volumes of medications may result in unintended medication administration errors.


Assuntos
Anestesiologistas/normas , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Enfermeiras e Enfermeiros/normas , Preparações Farmacêuticas/normas , Seringas/normas , Calibragem/normas , Humanos , Injeções , Preparações Farmacêuticas/química , Tuberculina/administração & dosagem , Tuberculina/química
7.
Expert Opin Investig Drugs ; 26(1): 109-119, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27935336

RESUMO

INTRODUCTION: According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes. Areas covered: This article summarizes the characteristics of the macrophage-stimulating agent RRx-001, a molecular iconoclast, sourced from the aerospace industry, with a particular emphasis on the cell-to-cell transfer mechanism of action (RBCs to TAMs) underlying its antitumor activity as well as its chemo and radioprotective properties, consolidated from various preclinical and clinical studies. Expert opinion: RRx-001 is macrophage-stimulating agent with the potential to synergize with chemotherapy, radiotherapy and immunotherapy while simultaneously protecting normal tissues from their cytotoxic effects. Given the promising indications of activity in multiple tumor types and these normal tissue protective properties, RRx-001 may be used to treat a broad spectrum of malignancies, if it is approved in the future.


Assuntos
Azetidinas/uso terapêutico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Nitrocompostos/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Azetidinas/efeitos adversos , Azetidinas/farmacologia , Morte Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Macrófagos/metabolismo , Neoplasias/patologia , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacologia
8.
J Med Chem ; 58(21): 8413-26, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26460788

RESUMO

Identification of singleton P2X7 inhibitor 1 from HTS gave a pharmacophore that eventually turned into potential clinical candidates 17 and 19. During development, a number of issues were successfully addressed, such as metabolic stability, plasma stability, GSH adduct formation, and aniline mutagenicity. Thus, careful modification of the molecule, such as conversion of the 1,4-dihydropyridinone to the 1,2-dihydropyridinone system, proper substitution at C-5″, and in some cases addition of fluorine atoms to the aniline ring allowed for the identification of a novel class of potent P2X7 inhibitors suitable for evaluating the role of P2X7 in inflammatory, immune, neurologic, or musculoskeletal disorders.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridonas/química , Piridonas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Halogenação , Humanos
9.
Lancet Oncol ; 16(9): 1133-1142, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296952

RESUMO

BACKGROUND: Epigenetic alterations have been strongly associated with tumour formation and resistance to chemotherapeutic drugs, and epigenetic modifications are an attractive target in cancer research. RRx-001 is activated by hypoxia and induces the generation of reactive oxygen and nitrogen species that can epigenetically modulate DNA methylation, histone deacetylation, and lysine demethylation. The aim of this phase 1 study was to assess the safety, tolerability, and pharmacokinetics of RRx-001. METHODS: In this open-label, dose-escalation, phase 1 study, we recruited adult patients (aged >18 years) with histologically or cytologically confirmed diagnosis of advanced, malignant, incurable solid tumours from University of California at San Diego, CA, USA, and Sarah Cannon Research Institute, Nashville, TN, USA. Key eligibility criteria included evaluable disease, Eastern Cooperative Group performance status of 2 or less, an estimated life expectancy of at least 12 weeks, adequate laboratory parameters, discontinuation of all previous antineoplastic therapies at least 6 weeks before intervention, and no residual side-effects from previous therapies. Patients were assigned to receive intravenous infusions of RRx-001 at increasing doses (10 mg/m(2), 16·7 mg/m(2), 24·6 mg/m(2), 33 mg/m(2), 55 mg/m(2), and 83 mg/m(2)) either once or twice-weekly for at least 4 weeks, with at least three patients per dose cohort and allowing a 2-week observation period before dose escalation. Samples for safety and pharmacokinetics analysis, including standard chemistry and haematological panels, were taken on each treatment day. The primary objective was to assess safety, tolerability, and dose-limiting toxic effects of RRx-001, to determine single-dose pharmacokinetics, and to identify a recommended dose for phase 2 trials. All analyses were done per protocol. Accrual is complete and follow-up is still on-going. This trial is registered with ClinicalTrials.gov, number NCT01359982. FINDINGS: Between Oct 10, 2011, and March 18, 2013, we enrolled 25 patients and treated six patients in the 10 mg/m(2) cohort, three patients in the 16·7 mg/m(2) cohort, three patients in the 24·6 mg/m(2) cohort, four patients in the 33 mg/m(2) cohort, three patients in the 55 mg/m(2), and six patients in the 83 mg/m(2) cohort. Pain at the injection site, mostly grade 1 and grade 2, was the most common adverse event related to treatment, experienced by 21 (84%) patients. Other common drug-related adverse events included arm swelling or oedema (eight [32%] patients), and vein hardening (seven [28%] patients). No dose-limiting toxicities were observed. Time constraints related to management of infusion pain from RRx-001 resulted in a maximally feasible dose of 83 mg/m(2). Of the 21 evaluable patients, one (5%) patient had a partial response, 14 (67%) patients had stable disease, and six (29%) patients had progressive disease; all responses were across a variety of tumour types. Four patients who had received RRx-001 were subsequently rechallenged with a treatment that they had become refractory to; all four responded to the rechallenge. INTERPRETATION: RRx-001 is a well-tolerated novel compound without clinically significant toxic effects at the tested doses. Preliminary evidence of activity is promising and, on the basis of all findings, a dose of 16·7 mg/m(2) was recommended as the targeted dose for phase 2 trials. FUNDING: EpicentRx (formerly RadioRx).


Assuntos
Azetidinas/administração & dosagem , Epigênese Genética/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Nitrocompostos/administração & dosagem , Adulto , Idoso , Azetidinas/efeitos adversos , Azetidinas/farmacocinética , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Epigênese Genética/genética , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacocinética , Prognóstico , Resultado do Tratamento
10.
Bioanalysis ; 6(7): 947-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24806903

RESUMO

BACKGROUND: Bioanalytical methods were required to study the novel anticancer drug, RRx-001 preclinically and for clinical pharmacokinetic analysis; however, RRx-001 quickly and completely disappeared on intravenous administration in preclinical species. RESULTS: Quantification of RRx-001 directly or by derivatization was unsuccessful. On exposure to whole blood, RRx-001 formed the glutathione (GSH) adduct very rapidly, suggesting this metabolite as the bioanalyte. However, rapid enzymatic degradation in the blood matrix of RRx-001-GSH posed significant technical problems. Herein, we describe a novel and broadly applicable solution to stabilize GSH conjugates in blood samples by inhibiting the degrading enzyme. Liquid chromatography-tandem mass spectrometry methods for analysis of RRx-001-GSH in rat, dog and human plasma were developed and successfully validated to good laboratory practice standards. CONCLUSION: Extensive breakdown of RRx-001-GSH was effectively stopped by addition of the enzyme inhibitor, acivicin. The developed liquid chromatography-tandem mass spectrometry assay for RRx-001-GSH was validated for use in preclinical toxicology studies and the Phase I first-in-human clinical trial.


Assuntos
Antineoplásicos/metabolismo , Azetidinas/metabolismo , Nitrocompostos/metabolismo , Animais , Antineoplásicos/farmacocinética , Azetidinas/farmacocinética , Calibragem , Cromatografia Líquida , Cães , Humanos , Nitrocompostos/farmacocinética , Ratos , Espectrometria de Massas em Tandem
11.
Rapid Commun Mass Spectrom ; 27(18): 2091-2098, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23943330

RESUMO

RATIONALE: Metabolomic profiling is a promising methodology of identifying candidate biomarkers for disease detection and monitoring. Although lung cancer is among the leading causes of cancer-related mortality worldwide, the lung tumor metabolome has not been fully characterized. METHODS: We utilized a targeted metabolomic approach to analyze discrete groups of related metabolites. We adopted a dansyl [5-(dimethylamino)-1-naphthalene sulfonamide] derivatization with liquid chromatography/mass spectrometry (LC/MS) to analyze changes of metabolites from paired tumor and normal lung tissues. Identification of dansylated dipeptides was confirmed with synthetic standards. A systematic analysis of retention times was required to reliably identify isobaric dipeptides. We validated our findings in a separate sample cohort. RESULTS: We produced a database of the LC retention times and MS/MS spectra of 361 dansyl dipeptides. Interpretation of the spectra is presented. Using this standard data, we identified a total of 279 dipeptides in lung tumor tissue. The abundance of 90 dipeptides was selectively increased in lung tumor tissue compared to normal tissue. In a second set of validation tissues, 12 dipeptides were selectively increased. CONCLUSIONS: A systematic evaluation of certain metabolite classes in lung tumors may identify promising disease-specific metabolites. Our database of all possible dipeptides will facilitate ongoing translational applications of metabolomic profiling as it relates to lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dipeptídeos/química , Neoplasias Pulmonares/metabolismo , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores/química , Biomarcadores/metabolismo , Carcinoma Pulmonar de Células não Pequenas/química , Estudos de Coortes , Dipeptídeos/metabolismo , Humanos , Neoplasias Pulmonares/química
12.
Gastrointest Endosc ; 78(2): 295-302.e2, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23566642

RESUMO

BACKGROUND: Better pancreatic cyst fluid biomarkers are needed. OBJECTIVE: To determine whether metabolomic profiling of pancreatic cyst fluid would yield clinically useful cyst fluid biomarkers. DESIGN: Retrospective study. SETTING: Tertiary-care referral center. PATIENTS: Two independent cohorts of patients (n = 26 and n = 19) with histologically defined pancreatic cysts. INTERVENTION: Exploratory analysis for differentially expressed metabolites between (1) nonmucinous and mucinous cysts and (2) malignant and premalignant cysts was performed in the first cohort. With the second cohort, a validation analysis of promising identified metabolites was performed. MAIN OUTCOME MEASUREMENTS: Identification of differentially expressed metabolites between clinically relevant cyst categories and their diagnostic performance (receiver operating characteristic [ROC] curve). RESULTS: Two metabolites had diagnostic significance-glucose and kynurenine. Metabolomic abundances for both were significantly lower in mucinous cysts compared with nonmucinous cysts in both cohorts (glucose first cohort P = .002, validation P = .006; and kynurenine first cohort P = .002, validation P = .002). The ROC curve for glucose was 0.92 (95% confidence interval [CI], 0.81-1.00) and 0.88 (95% CI, 0.72-1.00) in the first and validation cohorts, respectively. The ROC for kynurenine was 0.94 (95% CI, 0.81-1.00) and 0.92 (95% CI, 0.76-1.00) in the first and validation cohorts, respectively. Neither could differentiate premalignant from malignant cysts. Glucose and kynurenine levels were significantly elevated for serous cystadenomas in both cohorts. LIMITATIONS: Small sample sizes. CONCLUSION: Metabolomic profiling identified glucose and kynurenine to have potential clinical utility for differentiating mucinous from nonmucinous pancreatic cysts. These markers also may diagnose serous cystadenomas.


Assuntos
Biomarcadores Tumorais/metabolismo , Líquido Cístico/metabolismo , Cistadenocarcinoma/metabolismo , Cistadenoma/metabolismo , Glucose/metabolismo , Cinurenina/metabolismo , Cisto Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/metabolismo , Estudos de Coortes , Cistadenocarcinoma/diagnóstico , Cistadenocarcinoma Mucinoso/diagnóstico , Cistadenocarcinoma Mucinoso/metabolismo , Cistadenoma/diagnóstico , Cistadenoma Mucinoso/diagnóstico , Cistadenoma Mucinoso/metabolismo , Cistadenoma Seroso/diagnóstico , Cistadenoma Seroso/metabolismo , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Cisto Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Pseudocisto Pancreático/diagnóstico , Pseudocisto Pancreático/metabolismo , Estudos Retrospectivos , Sensibilidade e Especificidade
13.
J Pharmacol Exp Ther ; 344(2): 388-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23143674

RESUMO

Interspecies differences in drug metabolism have made it difficult to use preclinical animal testing data to predict the drug metabolites or potential drug-drug interactions (DDIs) that will occur in humans. Although chimeric mice with humanized livers can produce known human metabolites for test substrates, we do not know whether chimeric mice can be used to prospectively predict human drug metabolism or a possible DDI. Therefore, we investigated whether they could provide a more predictive assessment for clemizole, a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Our results demonstrate, for the first time, that analyses performed in chimeric mice can correctly identify the predominant human drug metabolite before human testing. The differences in the rodent and human pathways for clemizole metabolism were of importance, because the predominant human metabolite was found to have synergistic anti-HCV activity. Moreover, studies in chimeric mice also correctly predicted that a DDI would occur in humans when clemizole was coadministered with a CYP3A4 inhibitor. These results demonstrate that using chimeric mice can improve the quality of preclinical drug assessment.


Assuntos
Antivirais/metabolismo , Benzimidazóis/metabolismo , Fígado , Quimeras de Transplante/metabolismo , Animais , Antivirais/sangue , Antivirais/farmacocinética , Antivirais/uso terapêutico , Benzimidazóis/sangue , Benzimidazóis/farmacocinética , Benzimidazóis/uso terapêutico , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Meia-Vida , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Valor Preditivo dos Testes , Ratos , Ritonavir/metabolismo , Ritonavir/farmacocinética , Ritonavir/farmacologia , Especificidade da Espécie , Replicação Viral/efeitos dos fármacos
14.
Pharmacogenet Genomics ; 22(12): 877-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23076370

RESUMO

OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets.


Assuntos
Redes e Vias Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Sistemas de Liberação de Medicamentos , Perfilação da Expressão Gênica , Metabolômica , Saccharomyces cerevisiae/efeitos dos fármacos
15.
Drug Metab Dispos ; 40(9): 1810-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699395

RESUMO

RRx-001 has shown promise as a novel cancer therapeutic agent. The disposition of RRx-001 was evaluated in vitro and after intravenous administration to rats. At both 24 and 168 h after a single intravenous administration of ¹4C-RRx-001 (10 mg/kg), the majority of radiolabel was in the blood. The recovery of label in excreta was quite low, but the major route of radiolabel excretion was via the kidney, with approximately 26% in the urine by the first 8 h and decreasing amounts in all subsequent collections to a total of 36.3% by 168 h. The partitioning of total radioactivity in red blood cells (RBCs) and plasma was determined after in vitro addition to human, rat, dog, and monkey whole blood at 1 and 20 µM. In rat, at 30 min, approximately 75% of the radioactivity is associated with RBCs and 25% with plasma. In human, at 30 min, approximately 25% of the radioactivity is associated with RBCs and 75% with plasma. Analysis by liquid chromatography/radiodetection/mass spectrometry showed that ¹4C-RRx-001 reacted rapidly with whole blood to give four major soluble metabolites: the GSH and Cys adducts of RRx-001 (M1 and M2) and the corresponding mononitro GSH and Cys adducts (M3 and M4). Human Hb was incubated with cold RRx-001 in buffer, and a standard proteomics protocol was used to separate and identify the tryptic peptides. Standard peptide collision-induced fragment ions supported the structure of the peptide GTFATLSELHCDK with the alkylation on the Cys-93 locus of the Hb ß chain.


Assuntos
Antineoplásicos/farmacocinética , Azetidinas/farmacocinética , Nitrocompostos/farmacocinética , Alquilação , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/urina , Azetidinas/administração & dosagem , Azetidinas/sangue , Azetidinas/urina , Biotransformação , Cromatografia Líquida , Cisteína , Cães , Eritrócitos/metabolismo , Haplorrinos , Hemoglobinas/metabolismo , Humanos , Injeções Intravenosas , Rim/metabolismo , Masculino , Taxa de Depuração Metabólica , Nitrocompostos/administração & dosagem , Nitrocompostos/sangue , Nitrocompostos/urina , Mapeamento de Peptídeos , Ligação Proteica , Proteômica/métodos , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Espectrometria de Massas em Tandem , Distribuição Tecidual , Globinas beta/metabolismo
16.
Bioorg Med Chem Lett ; 20(20): 6020-3, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20829038

RESUMO

Further investigation of the recently reported piperidine-4-yl-aminopyrimidine class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has been carried out. Thus, preparation of a series of N-phenyl piperidine analogs resulted in the identification of 3-carboxamides as a particularly active series. Analogs such as 28 and 40 are very potent versus wild-type HIV-1 and a broad range of NNRTI-resistant mutant viruses. Synthesis, structure-activity relationship (SAR), clearance data, and crystallographic evidence for the binding motif are discussed.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Pirimidinas/química , Pirimidinas/farmacologia , Fármacos Anti-HIV/síntese química , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Pirimidinas/síntese química , Relação Estrutura-Atividade
17.
Drug Metab Lett ; 4(2): 77-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20446913

RESUMO

Imiloxan is an alpha2 adrenoceptor antagonist and was developed for depression in the 1980's. In Phase 1 clinical trials imiloxan dosing led to hypersensitivity reactions; the molecule's development was discontinued. The present study revisits the in vitro metabolism of imiloxan using modern analytical methods. Human and rat liver microsomes convert imiloxan into a variety of metabolites many of which are unstable and or reactive. Imiloxan also yields high protein covalent binding in microsomal assays. Imiloxan is a useful test molecule for defining the relationship between liver covalent binding and idiosyncratic toxicity.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/análise , Antagonistas de Receptores Adrenérgicos alfa 2/metabolismo , Imidazóis/análise , Imidazóis/metabolismo , Animais , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos
18.
Drug Metab Lett ; 3(3): 191-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19799546

RESUMO

The microsomal metabolism of ketoconazole is revisited using accurate mass LC/MS(n) and deuterium labelling. Structures for sixteen metabolites are proposed from rat and human microsomal metabolism of commercial ketoconazole. Thirteen of the proposed structures are well determined and consistent with all data; five of the proposed structures are less certain. Ten of the metabolites are described for the first time. Reaction phenotyping shows that most of the metabolites arise from CYP3A4, the enzyme known to be well inhibited by ketoconazole.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/metabolismo , Cetoconazol/metabolismo , Fígado/enzimologia , Animais , Biotransformação , Cromatografia Líquida , Inibidores do Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Medição da Troca de Deutério , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Cetoconazol/química , Cetoconazol/farmacologia , Fígado/efeitos dos fármacos , Masculino , Estrutura Molecular , Peso Molecular , Ratos , Espectrometria de Massas em Tandem
19.
Drug Metab Dispos ; 37(7): 1557-62, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19364830

RESUMO

Nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, has been associated with incidences of skin rash and hepatotoxicity in patients. Although the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of nevirapine and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether nevirapine undergoes cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. Liquid chromatography-tandem mass spectrometry analysis of incubations containing nevirapine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed the formation of a GSH conjugate derived from the addition of the sulfydryl nucleophile to nevirapine. No other GSH conjugates were detected, including conjugates of oxidized metabolites of nevirapine. These findings are consistent with a bioactivation sequence involving initial P450-catalyzed dehydrogenation of the aromatic nucleus with a 4-methyl group in nevirapine to an electrophilic quinone methide intermediate, which is subsequently attacked by glutathione yielding the sulfydryl conjugate. Formation of the nevirapine GSH conjugate was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP2D6, CYP2C19, and CYP2A6. In addition, the quinone methide reactive metabolite was a mechanism-based inactivator of CYP3A4, with inactivation parameters K(I) = 31 microM and k(inact) = 0.029 min(-1), respectively. It is proposed that formation of the quinone methide intermediate may represent a rate-limiting step in the initiation of nevirapine-mediated hepatotoxicity.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Glutationa/metabolismo , Indolquinonas/farmacologia , Microssomos Hepáticos/metabolismo , Nevirapina/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Espectrometria de Massas , Nevirapina/farmacologia , Oxirredução , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Espectrometria de Massas por Ionização por Electrospray
20.
Expert Opin Drug Metab Toxicol ; 5(1): 39-55, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19236228

RESUMO

BACKGROUND: Metabolic activation leading to formation of chemically reactive drug metabolites is a long-standing issue for drug development inasmuch as some, but not all, reactive intermediates play a role as mediators of drug-induced toxicities. The risk assessment profile/decision-making guide requires a comprehensive understanding of bioactivation mechanism(s), quantitative magnitude and cellular consequences of this principal and continued safety attrition. OBJECTIVE: To evaluate analytical methodologies with improved sensitivity, selectivity and throughput for the analysis of reactive metabolites. CONCLUSIONS: Identification and quantification of short-lived electrophilic intermediates through appropriate trapping experiments have become relatively straightforward. Minimizing the bioactivation potential of drug candidates during the discovery/lead optimization phase has been adopted as a default strategy. Together with advances of proteomics, metabolomics and toxicogenomics, an integrated multitier approach possibly provides a deeper insight into mechanistic aspects of drug-induced toxicities, and contributes to bridging the relationships between metabolic activation, drug-protein adduct formation and their toxicological consequences.


Assuntos
Técnicas de Química Analítica/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo , Animais , Biologia Computacional , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Espectrometria de Massas/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA