Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 179: 108157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625222

RESUMO

The current evidence on nanomaterial toxicity is mostly derived from experimental studies making it challenging to translate it into human health risks. We established an international cohort (N = 141 workers) within the EU-LIFE project "NanoExplore" to address possible health effects from occupational exposures to nanomaterials. We used a handheld direct-reading optical particle counter to measure airborne nanoparticle number concentrations (PNC) and lung-deposited surface areas (LDSAs). Airborne particles were characterized by TEM and SEM-EDAX. We assessed oxidative/nitrosative stress with a panel of biomarkers in exhaled breath condensate (EBC) (8-isoprostane, malondialdehyde, nitrotyrosine), inflammation (high-sensitivity C reactive protein (hs-CRP), IL-1ß, TNF-α, IL-10) and KL-6 (considered as biomarker of interstitial lung fibrosis) and urine (total antioxidant power (TAP), 8-isoprostane, and malondialdehyde). Exhaled breath sampled in gas-sampling bags were assessed for oxidative potential. These biomarkers were quantified pre-shift at the beginning of the workweek and post-shift the 4th day. Relationships between airborne nanoparticle concentration and biomarkers were assessed by multiple linear regression with log-transformed exposure and biomarker concentrations adjusted for potential confounders. We found a positive dose-response relationship for three inflammation biomarkers (IL-10, IL-1ß and TNF-α) in EBC with both PNC and LDSA. A negative dose-response relationship was observed between PNC and TAP. This study suggests that occupational exposures to nanoparticles can affect the oxidative balance and the innate immunity in occupationally exposed workers. However, owing to the intrinsic variability of biomarkers, the observed changes along with their health significance should be assessed in a long-term perspective study.


Assuntos
Nanoestruturas , Exposição Ocupacional , Humanos , Interleucina-10 , Fator de Necrose Tumoral alfa , Biomarcadores , Exposição Ocupacional/efeitos adversos , Antioxidantes , Inflamação
2.
Nanotoxicology ; 17(1): 1-19, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36927342

RESUMO

Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.


Assuntos
Nanoestruturas , Exposição Ocupacional , Humanos , Estudos Prospectivos , Exposição Ocupacional/análise , Nanotecnologia , Nanoestruturas/toxicidade , Monitoramento Biológico , Estudos Multicêntricos como Assunto
3.
Materials (Basel) ; 13(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066064

RESUMO

The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.

4.
Risk Anal ; 38(7): 1321-1331, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29240986

RESUMO

Societies worldwide are investing considerable resources into the safe development and use of nanomaterials. Although each of these protective efforts is crucial for governing the risks of nanomaterials, they are insufficient in isolation. What is missing is a more integrative governance approach that goes beyond legislation. Development of this approach must be evidence based and involve key stakeholders to ensure acceptance by end users. The challenge is to develop a framework that coordinates the variety of actors involved in nanotechnology and civil society to facilitate consideration of the complex issues that occur in this rapidly evolving research and development area. Here, we propose three sets of essential elements required to generate an effective risk governance framework for nanomaterials. (1) Advanced tools to facilitate risk-based decision making, including an assessment of the needs of users regarding risk assessment, mitigation, and transfer. (2) An integrated model of predicted human behavior and decision making concerning nanomaterial risks. (3) Legal and other (nano-specific and general) regulatory requirements to ensure compliance and to stimulate proactive approaches to safety. The implementation of such an approach should facilitate and motivate good practice for the various stakeholders to allow the safe and sustainable future development of nanotechnology.

5.
Sci Total Environ ; 609: 348-359, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28753510

RESUMO

The number of people exposed to nanoparticles is growing accordingly to the production and development of new nanomaterials. Moreover, this increase is expected to continue in the future. However, there is a lack of standardized sampling and metric methods to measure the level of exposure to nanoparticles, and the information related to possible adverse health effects is scarce. Aerosol technology has been detecting and characterizing nanoparticles for decades and some of their developments can be of use in nanotechnology characterization. We present here two current developments based on used principles in aerosol science, which can widen its application to the characterization of nanomaterials. On the one hand, a sample preparation technique for nanoparticle analysis by electron microscopy based on electrospray atomization technology. Several samples prepared in this way have been analysed and compared to more traditional sample preparation strategies like the "drop on grid" method. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and the number of single particles increases substantially. On the other hand, it is presented an electrical mobility classification system, DMA, with enormous possibilities for the quick and economic size characterization of suspensions of nanoparticles, thanks to its injection system by electrospray and to its high resolution in the lower range of the nanoscale. The first assessment of the abovementioned devices highlights its potential applications in exposure assessment and nanotechnological contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA