Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 8(3): 1833-1841, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435257

RESUMO

One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator-prey relationships. Understanding the relative role of top-down versus bottom-up drivers is of particular interest in understanding ecosystem dynamics. Our goal was to explore predator-prey relationships in a boreal ecosystem in interior Alaska through the use of multispecies long-term monitoring data. We used 29 years of field data and a dynamic multistate site occupancy modeling approach to explore the trophic relationships between an apex predator, the golden eagle, and cyclic populations of the two primary prey species available to eagles early in the breeding season, snowshoe hare and willow ptarmigan. We found that golden eagle reproductive success was reliant on prey numbers, but also responded prior to changes in the phase of the snowshoe hare population cycle and failed to respond to variation in hare cycle amplitude. There was no lagged response to ptarmigan populations, and ptarmigan populations recovered quickly from the low phase. Together, these results suggested that eagle reproduction is largely driven by bottom-up processes, with little evidence of top-down control of either ptarmigan or hare populations. Although the relationship between golden eagle reproductive success and prey abundance had been previously established, here we established prey populations are likely driving eagle dynamics through bottom-up processes. The key to this insight was our focus on golden eagle reproductive parameters rather than overall abundance. Although our inference is limited to the golden eagle-hare-ptarmigan relationships we studied, our results suggest caution in interpreting predator-prey abundance patterns among other species as strong evidence for top-down control.

2.
Oecologia ; 186(2): 435-446, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29170821

RESUMO

Vertebrate populations throughout the circumpolar north often exhibit cyclic dynamics, and predation is generally considered to be a primary driver of these cycles in a variety of herbivore species. However, weather and climate play a role in entraining cycles over broad landscapes and may alter cyclic dynamics, although the mechanism by which these processes operate is uncertain. Experimental and observational work has suggested that weather influences primary productivity over multi-year time periods, suggesting a pathway through which weather and climate may influence cyclic herbivore dynamics. Using long-term monitoring data, we investigated the relationships among multi-year weather conditions, measures of primary productivity, and the abundance of two cyclic herbivore species: snowshoe hare and northern red-backed vole. We found that precipitation (rain and snow) and growing season temperatures were strongly associated with variation in primary productivity over multi-year time horizons. In turn, fourfold variation in the amplitude of both the hare and vole cycles observed in our study area corresponded to long-term changes in primary productivity. The congruence of our results for these two species suggests a general mechanism by which weather and climate might influence cyclic herbivore population dynamics. Our findings also suggested that the association between climate warming and the disappearance of cycles might be initiated by changes in primary productivity. This work provides an explanation for observed influences of weather and climate on primary productivity and population cycles and will help our collective understanding of how future climate warming may influence these ecological phenomena in the future.


Assuntos
Lebres , Herbivoria , Animais , Clima , Dinâmica Populacional , Estações do Ano , Tempo (Meteorologia)
3.
PLoS One ; 12(11): e0188185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149202

RESUMO

Subspecies relationships within the peregrine falcon (Falco peregrinus) have been long debated because of the polytypic nature of melanin-based plumage characteristics used in subspecies designations and potential differentiation of local subpopulations due to philopatry. In North America, understanding the evolutionary relationships among subspecies may have been further complicated by the introduction of captive bred peregrines originating from non-native stock, as part of recovery efforts associated with mid 20th century population declines resulting from organochloride pollution. Alaska hosts all three nominal subspecies of North American peregrine falcons-F. p. tundrius, anatum, and pealei-for which distributions in Alaska are broadly associated with nesting locales within Arctic, boreal, and south coastal maritime habitats, respectively. Unlike elsewhere, populations of peregrine falcon in Alaska were not augmented by captive-bred birds during the late 20th century recovery efforts. Population genetic differentiation analyses of peregrine populations in Alaska, based on sequence data from the mitochondrial DNA control region and fragment data from microsatellite loci, failed to uncover genetic distinction between populations of peregrines occupying Arctic and boreal Alaskan locales. However, the maritime subspecies, pealei, was genetically differentiated from Arctic and boreal populations, and substructured into eastern and western populations. Levels of interpopulational gene flow between anatum and tundrius were generally higher than between pealei and either anatum or tundrius. Estimates based on both marker types revealed gene flow between augmented Canadian populations and unaugmented Alaskan populations. While we make no attempt at formal taxonomic revision, our data suggest that peregrine falcons occupying habitats in Alaska and the North Pacific coast of North America belong to two distinct regional groupings-a coastal grouping (pealei) and a boreal/Arctic grouping (currently anatum and tundrius)-each comprised of discrete populations that are variously intra-regionally connected.


Assuntos
DNA Mitocondrial/genética , Falconiformes/genética , Fluxo Gênico , Especiação Genética , Filogenia , Alaska , Animais , Cruzamento , Canadá , Falconiformes/classificação , Plumas/anatomia & histologia , Feminino , Loci Gênicos , Variação Genética , Masculino , Repetições de Microssatélites , Filogeografia , Pigmentação/genética
4.
PLoS One ; 6(5): e19582, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21573241

RESUMO

BACKGROUND: Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. METHODOLOGY/PRINCIPAL FINDINGS: By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. CONCLUSIONS/SIGNIFICANCE: We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.


Assuntos
Evolução Biológica , Ecossistema , Água do Mar , Lobos/genética , Alaska , Animais , Colúmbia Britânica , Haplótipos/genética , Filogeografia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA