Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Artif Intell Med ; 132: 102387, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36207077

RESUMO

INTRODUCTION: Unscheduled machine downtime can cause treatment interruptions and adversely impact patient treatment outcomes. Conventional Quality Assurance (QA) programs of a proton Pencil Beam Scanning (PBS) system ensure its operational performance by keeping the beam parameters within clinical tolerances but often do not reveal the underlying issues of the device prior to a machine malfunction event. In this study, we propose a Predictive Maintenance (PdM) approach that leverages an advanced analytical tool built on a deep neural network to detect treatment delivery machine issues early. METHODS: Beam delivery log file data from daily QA performed at the Burr Proton Center of Massachusetts General Hospital were collected. A novel PdM framework consisting of long short-term memory-based autoencoder (LSTM-AE) modeling of the proton PBS delivery system and a Mahalanobis distance-based error metric evaluation was constructed to detect rare anomalous machine events. These included QA beam pauses, clinical operational issues, and treatment interruptions. The model was trained in an unsupervised fashion on the QA data of normal sessions so that the model learned characteristics of normal machine operation. The anomaly is quantified as the multivariate deviation between the model predicted data and the measured data of the day using Mahalanobis distance (M-Score). Two-layer and three-layer Long short-term memory-based stacked autoencoder (LSTM-SAE) models were optimized for exploring model performance improvement. Model validation was performed with two clinical datasets and was analyzed using the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic (AUROC). RESULTS: LSTM-SAE models showed strong performance in predicting QA beam pauses for both clinical validation datasets. Despite severe skew in the dataset, the model achieved AUPRC of 0.60 and 0.82 and AUROC of 0.75 and 0.92 in the respective 2018 and 2020 datasets. Moreover, these amount to 2.8-fold and 10.7-fold enhancement compared to the respective baseline event rates. In addition, in terms of treatment interruption events, model prediction enabled 3.88-fold and 51.2-fold detection improvement, while the detection improvement for clinical operational issues was 1.04-fold and 1.37-fold, respectively, in the 2018 and 2020 datasets. CONCLUSION: Our novel deep LSTM-SAE-based framework allows for highly discriminative prediction of anomalous machine events and demonstrates great promise for enabling PdM for proton PBS beam delivery.


Assuntos
Terapia com Prótons , Prótons , Humanos , Redes Neurais de Computação
2.
Phys Med Biol ; 66(5)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33227715

RESUMO

The treatment of cancer with proton radiation therapy was first suggested in 1946 followed by the first treatments in the 1950s. As of 2020, almost 200 000 patients have been treated with proton beams worldwide and the number of operating proton therapy (PT) facilities will soon reach one hundred. PT has long moved from research institutions into hospital-based facilities that are increasingly being utilized with workflows similar to conventional radiation therapy. While PT has become mainstream and has established itself as a treatment option for many cancers, it is still an area of active research for various reasons: the advanced dose shaping capabilities of PT cause susceptibility to uncertainties, the high degrees of freedom in dose delivery offer room for further improvements, the limited experience and understanding of optimizing pencil beam scanning, and the biological effect difference compared to photon radiation. In addition to these challenges and opportunities currently being investigated, there is an economic aspect because PT treatments are, on average, still more expensive compared to conventional photon based treatment options. This roadmap highlights the current state and future direction in PT categorized into four different themes, 'improving efficiency', 'improving planning and delivery', 'improving imaging', and 'improving patient selection'.


Assuntos
Neoplasias , Terapia com Prótons , Biologia , Humanos , Neoplasias/radioterapia , Fótons , Física , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Radiat Res ; 194(6): 656-664, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991708

RESUMO

Extremely high-dose-rate irradiation, referred to as FLASH, has been shown to be less damaging to normal tissues than the same dose administrated at conventional dose rates. These results, typically seen at dose rates exceeding 40 Gy/s (or 2,400 Gy/min), have been widely reported in studies utilizing photon or electron radiation as well as in some proton radiation studies. Here, we report the development of a proton irradiation platform in a clinical proton facility and the dosimetry methods developed. The target is placed in the entry plateau region of a proton beam with a specifically designed double-scattering system. The energy after the double-scattering system is 227.5 MeV for protons that pass through only the first scatterer, and 225.5 MeV for those that also pass through the second scatterer. The double-scattering system was optimized to deliver a homogeneous dose distribution to a field size as large as possible while keeping the dose rate >100 Gy/s and not exceeding a cyclotron current of 300 nA. We were able to obtain a collimated pencil beam (1.6 × 1.2 cm2 ellipse) at a dose rate of ∼120 Gy/s. This beam was used for dose-response studies of partial abdominal irradiation of mice. First results indicate a potential tissue-sparing effect of FLASH.


Assuntos
Terapia com Prótons/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
4.
Med Phys ; 46(8): e678-e705, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125441

RESUMO

PURPOSE:  Task Group (TG) 224 was established by the American Association of Physicists in Medicine's Science Council under the Radiation Therapy Committee and Work Group on Particle Beams. The group was charged with developing comprehensive quality assurance (QA) guidelines and recommendations for the three commonly employed proton therapy techniques for beam delivery: scattering, uniform scanning, and pencil beam scanning. This report supplements established QA guidelines for therapy machine performance for other widely used modalities, such as photons and electrons (TG 142, TG 40, TG 24, TG 22, TG 179, and Medical Physics Practice Guideline 2a) and shares their aims of ensuring the safe, accurate, and consistent delivery of radiation therapy dose distributions to patients. METHODS:  To provide a basis from which machine-specific QA procedures can be developed, the report first describes the different delivery techniques and highlights the salient components of the related machine hardware. Depending on the particular machine hardware, certain procedures may be more or less important, and each institution should investigate its own situation. RESULTS:  In lieu of such investigations, this report identifies common beam parameters that are typically checked, along with the typical frequencies of those checks (daily, weekly, monthly, or annually). The rationale for choosing these checks and their frequencies is briefly described. Short descriptions of suggested tools and procedures for completing some of the periodic QA checks are also presented. CONCLUSION:  Recommended tolerance limits for each of the recommended QA checks are tabulated, and are based on the literature and on consensus data from the clinical proton experience of the task group members. We hope that this and other reports will serve as a reference for clinical physicists wishing either to establish a proton therapy QA program or to evaluate an existing one.


Assuntos
Terapia com Prótons/instrumentação , Garantia da Qualidade dos Cuidados de Saúde , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/normas , Radiometria , Cintilografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Segurança
5.
Phys Med Biol ; 64(6): 065022, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561373

RESUMO

In proton therapy, range uncertainties induced by the conversion from x-ray CT (xCT) Hounsfield units (HU) to relative stopping power (RSP) compromise the precision of dose delivery. To reduce range uncertainties induced by HU-converted RSPs, this study investigates optimizing the RSP of individual voxels in xCT iteratively based on multi-projection proton radiography (pRG) acquired using a single amorphous silicon flat panel imager. Time-resolved dose rate functions (DRF) were measured by the imager placed downstream of a test phantom consisting of tissue substitute materials. Water equivalent path lengths (WEPL) in the pRG were derived. By rotating the phantom, multiple pRG projections were acquired at angles from 0 to 358° with an increment of 2°. X-ray CT of the phantom was acquired and co-registered with the pRG acquisition coordinates. RSPs of individual xCT voxels were optimized iteratively by minimizing the difference between the measured WEPLs and the calculated WEPLs by ray tracing with HU-converted RSPs. Pixels in pRGs that exhibited severe proton range mixing were rejected for the optimization. Tikhonov regularization was applied under the assumption that HU-converted RSPs are inaccurate, but the inaccuracy is within a few percent. While ~50% of WEPL pixels were rejected due to severe range mixing in pRG, RSPs of >90% CT voxels could still be optimized if multiple pRG projections, e.g. ⩾12, around the phantom are utilized. For tissue substitute materials in a cylindrical phantom, percentage errors of RSPs were reduced from a range of -8% to +4% to be within ±2%. Further optimization, achieved by implementing a material-specific regularization parameter, reduced percent errors to be within ±0.5%. This study demonstrates the concept of optimizing RSPs of individual CT voxels with multi-projection pRGs acquired by a single flat panel imager, which could be further explored and implemented in proton therapy to reduce range uncertainties.


Assuntos
Algoritmos , Imagens de Fantasmas , Terapia com Prótons , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Humanos
6.
Med Phys ; 45(11): e953-e983, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30421804

RESUMO

Particle therapy is rapidly expanding and claiming its position as the treatment modality of choice in teletherapy. However, the rate of expansion continues to be restricted by the size and cost of the associated particle therapy systems and their operation. Additional technical limitations such as dose delivery rate, treatment process efficiency, and achievement of superior dose conformity potentially hinder the complete fulfillment of the promise of particle therapy. These topics are explored in this review considering the current state of particle therapy systems and what improvements are required to overcome the current challenges. Beam production systems (accelerators), beam transport systems including gantries and beam delivery systems are addressed explicitly in these regards.


Assuntos
Radioterapia/métodos , Ciclotrons , Humanos , Radioterapia/instrumentação
7.
Phys Med Biol ; 63(10): 105007, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29644984

RESUMO

Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties. The motivation is to use standard equipment, which may have pixel spacing coarser than the pencil beam size, and simplify QA workflow. The MatriXX pixels are cylindrical in shape with 4.5 mm diameter and are spaced 7.62 mm from center to center. Two major effects limit the ability of using the MatriXX to measure the spot position and width accurately. The first effect is that too few pixels sample the Gaussian shaped pencil beam profile and the second effect is volume averaging of the Gaussian profile over the pixel sensitive volumes. We designed a method that overcomes both limitations and hence enables the use of the MatriXX to characterize sub-millimeter-sized PBS beam properties. This method uses a cross-like irradiation pattern that is designed to increase the number of sampling data points and a modified Gaussian fitting technique to correct for volume averaging effects. Detector signals were calculated in this study and random noise and setup errors were added to simulate measured data. With the techniques developed in this work, the MatriXX detector can be used to characterize the position and width of sub-millimeter, σ = 0.7 mm, sized pencil beams with uncertainty better than 3% relative to σ. With the irradiation only covering 60% of the MatriXX, the position and width of σ = 0.9 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like irradiation pattern, then the position and width of σ = 3.6 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like pattern nor volume averaging corrections, then the position and width of σ = 5.0 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. This work helps to simplify periodic QA in proton therapy because more routinely used ionization chamber arrays can be used to characterize narrow pencil beam properties.


Assuntos
Terapia com Prótons/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/instrumentação , Desenho de Equipamento , Alemanha , Humanos , Dosagem Radioterapêutica
8.
Phys Med Biol ; 63(1): 015030, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29116055

RESUMO

Proton radiography, which images patients with the same type of particles as those with which they are to be treated, is a promising approach to image guidance and water equivalent path length (WEPL) verification in proton radiation therapy. We have shown recently that proton radiographs could be obtained by measuring time-resolved dose rate functions (DRFs) using an x-ray amorphous silicon flat panel. The WEPL values were derived solely from the root-mean-square (RMS) of DRFs, while the intensity information in the DRFs was filtered out. In this work, we explored the use of such intensity information for potential improvement in WEPL accuracy and imaging quality. Three WEPL derivation methods based on, respectively, the RMS only, the intensity only, and the intensity-weighted RMS were tested and compared in terms of the quality of obtained radiograph images and the accuracy of WEPL values. A Gammex CT calibration phantom containing inserts made of various tissue substitute materials with independently measured relative stopping powers (RSP) was used to assess the imaging performances. Improved image quality with enhanced interfaces was achieved while preserving the accuracy by using intensity information in the calibration. Other objects, including an anthropomorphic head phantom, a proton therapy range compensator, a frozen lamb's head and an 'image quality phantom' were also imaged. Both the RMS only and the intensity-weighted RMS methods derived RSPs within ± 1% for most of the Gammex phantom inserts, with a mean absolute percentage error of 0.66% for all inserts. In the case of the insert with a titanium rod, the method based on RMS completely failed, whereas that based on the intensity-weighted RMS was qualitatively valid. The use of intensity greatly enhanced the interfaces between different materials in the obtained WEPL images, suggesting the potential for image guidance in areas such as patient positioning and tumor tracking by proton radiography.


Assuntos
Cabeça/diagnóstico por imagem , Imagens de Fantasmas , Prótons , Radiografia/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Calibragem , Doses de Radiação , Radiografia/instrumentação , Radiografia/normas , Ovinos
9.
Med Phys ; 44(11): 6085-6095, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887837

RESUMO

PURPOSE: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam. METHODS: A novel silicon microdosimeter with well-defined 3D SVs was used in this study. It was connected to low noise electronics, allowing for detection of lineal energies as low as 0.15 keV/µm. The microdosimeter was placed at various depths in a water phantom along the central axis of the proton beam, and at the distal part of the spread-out Bragg peak (SOBP) in 0.5 mm increments. The RBE values of the pristine Bragg peak (BP) and SOBP were derived using the measured microdosimetric lineal energy spectra as inputs to the modified microdosimetric kinetic model (MKM). Geant4 simulations were performed in order to verify the calculated depth-dose distribution from the treatment planning system (TPS) and to compare the simulated dose-mean lineal energy to the experimental results. RESULTS: For a 131 MeV PBS spot (124.6 mm R90 range in water), the measured dose-mean lineal energy yD¯ increased from 2 keV/µm at the entrance to 8 keV/µm in the BP, with a maximum value of 10 keV/µm at the distal edge. The derived RBE distribution for the PBS beam slowly increased from 0.97 ± 0.14 at the entrance to 1.04 ± 0.09 proximal to the BP, then to 1.1 ± 0.08 in the BP, and steeply rose to 1.57 ± 0.19 at the distal part of the BP. The RBE distribution for the DS SOBP beam was approximately 0.96 ± 0.16 to 1.01 ± 0.16 at shallow depths, and 1.01 ± 0.16 to 1.28 ± 0.17 within the SOBP. The RBE significantly increased from 1.29 ± 0.17 to 1.43 ± 0.18 at the distal edge of the SOBP. CONCLUSIONS: The SOI microdosimeter with its well-defined 3D SV has applicability in characterizing proton radiation fields and can measure relevant physical parameters to model the RBE with submillimeter spatial resolution. It has been shown that for a physical dose of 1.82 Gy at the BP, the derived RBE based on the MKM model increased from 1.14 to 1.6 in the BP and its distal part. Good agreement was observed between the experimental and simulation results, confirming the potential application of SOI microdosimeter with 3D SV for quality assurance in proton therapy.


Assuntos
Microtecnologia/instrumentação , Terapia com Prótons , Radiometria/instrumentação , Dosagem Radioterapêutica , Espalhamento de Radiação
10.
Phys Med Biol ; 62(2): 344-357, 2017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-27997378

RESUMO

While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also indicating the dosimetric differences are small when a field is delivered at different gantry angles. Utilizing the online beam delivery records, the gantry angle dependencies of the PBS beam delivery were assessed and quantified. The study confirms the variations of the physical properties to be sufficiently small within the clinical tolerances without taking into account the gantry angle variation.


Assuntos
Imagens de Fantasmas , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Terapia com Prótons/normas , Radiometria/métodos , Dosagem Radioterapêutica
11.
Phys Med Biol ; 61(12): 4665-78, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27245098

RESUMO

Proton pencil beam scanning (PBS) treatment plans are made of numerous unique spots of different weights. These weights are optimized by the treatment planning systems, and sometimes fall below the deliverable threshold set by the treatment delivery system. The purpose of this work is to investigate a Greedy reassignment algorithm to mitigate the effects of these low weight pencil beams. The algorithm is applied during post-processing to the optimized plan to generate deliverable plans for the treatment delivery system. The Greedy reassignment method developed in this work deletes the smallest weight spot in the entire field and reassigns its weight to its nearest neighbor(s) and repeats until all spots are above the minimum monitor unit (MU) constraint. Its performance was evaluated using plans collected from 190 patients (496 fields) treated at our facility. The Greedy reassignment method was compared against two other post-processing methods. The evaluation criteria was the γ-index pass rate that compares the pre-processed and post-processed dose distributions. A planning metric was developed to predict the impact of post-processing on treatment plans for various treatment planning, machine, and dose tolerance parameters. For fields with a pass rate of 90 ± 1% the planning metric has a standard deviation equal to 18% of the centroid value showing that the planning metric and γ-index pass rate are correlated for the Greedy reassignment algorithm. Using a 3rd order polynomial fit to the data, the Greedy reassignment method has 1.8 times better planning metric at 90% pass rate compared to other post-processing methods. As the planning metric and pass rate are correlated, the planning metric could provide an aid for implementing parameters during treatment planning, or even during facility design, in order to yield acceptable pass rates. More facilities are starting to implement PBS and some have spot sizes (one standard deviation) smaller than 5 mm, hence would require small spot spacing. While this is not the only parameter that affects the optimized plan, the perturbation due to the minimum MU constraint increases with decreasing spot spacing. This work could help to design the minimum MU threshold with the goal to keep the γ-index pass rate above an acceptable value.


Assuntos
Algoritmos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Terapia com Prótons/normas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/normas
12.
Phys Med Biol ; 61(1): 400-12, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26674990

RESUMO

Delivery of pencil beam scanning (PBS) requires the on-line measurement of several beam parameters. If the measurement is outside of specified tolerances and a binary threshold algorithm is used, the beam will be paused. Given instrumentation and statistical noise such a system can lead to many pauses which could increase the treatment time. Statistical quality control methods are typically used on manufacturing lines to monitor a process and give early detection of a gradual problem and stop the process if a deviation is statistically significant. These methods can be used to develop a more intuitive algorithm for (PBS) delivery systems that is robust and safe and leads to decreased treatment times. The Exponentially Weighted Moving Average (EWMA) control scheme monitors deviations in beam properties which are averaged over a specified number of measurements with greater weight applied to the more recent ones. Simulation of an EWMA-style algorithm safely detected shifts in random and systematic delivery errors without false alarms. Binary and EWMA methods can be combined for improved reliability without sacrificing patient safety. In the EWMA method, the mean of a beam property can be related to systematic uncertainties and the standard deviation can be related to random uncertainties. This method allows one to have separate interlock levels for each type of uncertainty and to detect systematic trends.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Terapia com Prótons/efeitos adversos
13.
Semin Radiat Oncol ; 23(2): 142-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23473692

RESUMO

The evolution of proton therapy technology will lead to a new generation of systems that allow for greater accuracy and precision of the dose delivery and will be more compact. We envision that over the next 10-15 years, the quality of deliverable proton dose distributions in the patient will be pushed nearly toward the physical limit of proton therapy. Those future proton therapy systems will fit into treatment rooms of similar size as today's conventional radiation treatment rooms. At the same time, due to technological advancements, the cost of proton therapy will come down to the cost of advanced photon therapy. We discuss some of the technologies that will put these speculative improvements within reach.


Assuntos
Tecnologia Biomédica/tendências , Neoplasias/radioterapia , Terapia com Prótons/instrumentação , Terapia com Prótons/normas , Garantia da Qualidade dos Cuidados de Saúde , Desenho de Equipamento , Humanos , Dosagem Radioterapêutica
14.
Phys Med Biol ; 57(21): N405-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23073269

RESUMO

Treatment planning databases for pencil beam scanning can be large, difficult to manage and problematic for quality assurance when they contain tabulated Bragg peaks at small range resolution. Smaller range resolution, in the absence of an accurate interpolation method, improves the accuracy in dose calculations. In this work, we derive an approximate scaling function to interpolate between tabulated Bragg peaks, and determine the accuracy of this interpolation technique and the minimum number of tabulated peaks in a treatment planning database. With the new interpolation technique, three tabulated mono-energetic Bragg peaks (N = 3) are a suitable lower limit for N to achieve interpolation accuracy better than ±1% of the maximum dose in pristine and spread out Bragg peaks for ranges between 6.8 and 32.1 cm of water.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos
15.
Phys Med Biol ; 57(21): 6981-97, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23044713

RESUMO

The γ-index is used routinely to establish correspondence between two dose distributions. The definition of the γ-index can be written with a single equation but solving this equation at millions of points is computationally expensive, especially in three dimensions. Our goal is to extend the vector-equation method in Bakai et al (2003 Phys. Med. Biol.48 3543-53) to higher order for better accuracy and, as important, to determine the magnitude of accuracy in a higher order solution. We construct a numerical framework for calculating the γ-index in two and three dimensions and present an efficient method for calculating the γ-index with zeroth-, first- and second-order methods using tricubic spline interpolation. For an intensity-modulated radiation therapy example with 1.78 × 106 voxels, the zeroth-order, first-order, first-order iterations and semi-second-order methods calculate the three-dimensional γ-index in 1.5, 4.7, 34.7 and 35.6 s with 36.7%, 1.1%, 0.2% and 0.8% accuracy, respectively. The accuracy of linear interpolation with this example is 1.0%. We present efficient numerical methods for calculating the three-dimensional γ-index with tricubic spline interpolation. The first-order method with iterations is the most accurate and fastest choice of the numerical methods if the dose distributions may have large second-order gradients. Furthermore, the difference between iterations can be used to determine the accuracy of the method.


Assuntos
Modelos Teóricos , Doses de Radiação
16.
Phys Med Biol ; 57(10): 2829-42, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22513726

RESUMO

This study is aimed at identifying the potential benefits of using a patient-specific aperture in proton beam scanning. For this purpose, an accurate Monte Carlo model of the pencil beam scanning (PBS) proton therapy (PT) treatment head at Massachusetts General Hospital (MGH) was developed based on an existing model of the passive double-scattering (DS) system. The Monte Carlo code specifies the treatment head at MGH with sub-millimeter accuracy. The code was configured based on the results of experimental measurements performed at MGH. This model was then used to compare out-of-field doses in simulated DS treatments and PBS treatments. For the conditions explored, the penumbra in PBS is wider than in DS, leading to higher absorbed doses and equivalent doses adjacent to the primary field edge. For lateral distances greater than 10 cm from the field edge, the doses in PBS appear to be lower than those observed for DS. We found that placing a patient-specific aperture at nozzle exit during PBS treatments can potentially reduce doses lateral to the primary radiation field by over an order of magnitude. In conclusion, using a patient-specific aperture has the potential to further improve the normal tissue sparing capabilities of PBS.


Assuntos
Método de Monte Carlo , Medicina de Precisão/métodos , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
17.
Phys Med Biol ; 57(5): 1147-58, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22330090

RESUMO

Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 109 (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.


Assuntos
Prótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Calibragem , Humanos , Íons , Modelos Estatísticos , Método de Monte Carlo , Distribuição Normal , Radiação Ionizante , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
18.
Radiother Oncol ; 95(1): 3-22, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20185186

RESUMO

BACKGROUND AND PURPOSE: Relative to X-ray beams, proton [(1)H] and carbon ion [(12)C] beams provide superior distributions due primarily to their finite range. The principal differences are LET, low for (1)H and high for (12)C, and a narrower penumbra of (12)C beams. Were (12)C to yield a higher TCP for a defined NTCP than (1)H therapy, would LET, fractionation or penumbra width be the basis? METHODS: Critical factors of physics, radiation biology of (1)H and (12)C ion beams, neutron therapy and selected reports of TCP and NTCP from (1)H and (12)C irradiation of nine tumor categories are reviewed. RESULTS: Outcome results are based on low dose per fraction (1)H and high dose per fraction (12)C therapy. Assessment of the role of LET and dose distribution vs dose fractionation is not now feasible. Available data indicate that TCP increases with BED with (1)H and (12)C TCPs overlaps. Frequencies of GIII NTCPs were higher after (1)H than (12)C treatment. CONCLUSIONS: Assessment of the efficacy of (1)H vs(12)C therapy is not feasible, principally due to the dose fractionation differences. Further, there is no accepted policy for defining the CTV-GTV margin nor definition of TCP. Overlaps of (1)H and (12)C ion TCPs at defined BED ranges indicate that TCPs are determined in large measure by dose, BED. Late GIII NTCP was higher in (1)H than (12)C patients, indicating LET as a significant factor. We recommend trials of (1)H vs(12)C with one variable, i.e. LET. The resultant TCP vs NTCP relationship will indicate which beam yields higher TCP for a specified NTCP at a defined dose fractionation.


Assuntos
Carbono , Radioterapia com Íons Pesados , Neoplasias/radioterapia , Terapia com Prótons , Nêutrons Rápidos/uso terapêutico , Humanos , Transferência Linear de Energia , Eficiência Biológica Relativa
19.
Int J Radiat Oncol Biol Phys ; 76(2): 624-30, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20117294

RESUMO

PURPOSE: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. METHODS AND MATERIALS: Our first deployment of PBS uses "broad" pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm(2). Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. RESULTS: We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. DISCUSSION: The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.


Assuntos
Algoritmos , Lipossarcoma Mixoide/radioterapia , Terapia com Prótons , Neoplasias Retroperitoneais/radioterapia , Humanos , Lipossarcoma Mixoide/patologia , Masculino , Pessoa de Meia-Idade , Radioterapia Conformacional/métodos , Neoplasias Retroperitoneais/patologia , Tecnologia Radiológica/métodos , Fatores de Tempo
20.
Cancer J ; 15(4): 292-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19672145

RESUMO

The technology that is used for the production and delivery of therapeutic proton beams is reviewed. Increased interest in this treatment modality has inspired a new generation of technology development and research into methods that will make proton treatment facilities more widely available (less expensive) and more efficient. Proton beam therapy has been in use for more than 40 years; it remains a treatment modality of interest because it provides a highly conformal dose distribution to a wide variety of disease sites and the potential for improving clinical outcomes. Recent advances in beam scanning technology may represent the ultimate in external beam radiotherapy dose conformality and treatment delivery efficiency. We describe how this new technology can be integrated into a proton therapy facility.


Assuntos
Neoplasias/radioterapia , Terapia com Prótons , Radiometria/instrumentação , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos , Aceleração , Arquitetura de Instituições de Saúde , Instalações de Saúde , Humanos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA