Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 197: 114898, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968485

RESUMO

The chemotherapeutic agent paclitaxel (PTX) selectively binds to and stabilizes microtubule (MTs). Also, the activated formin Diaphanous Related Formin 1 (DIAPH1) binds to MTs and increases its stability. In a recent study, we found that high DIAPH1 levels correlated with increased survival of ovarian cancer (Ovca) patients. A possible explanation for this finding is that Ovca cells with high DIAPH1 levels are more sensitive to PTX. To examine this assumption, in this study the effect of DIAPH1 depletion on PTX-mediated cytotoxicity of OVCAR8 and OAW42 cells was analyzed. Our data showed that down-regulation of DIAPH1 expression decreased PTX sensitivity in both cell lines by reducing apoptosis or necrosis. Analysis of MT stability by Western blotting revealed a decreased concentration of stable, detyrosinated MTs in PTX-treated DIAPH1 knock-down compared to control cells. Also, in fixed metaphase cells the level of stable, detyrosinated spindle MTs decreased in cells with reduced DIAPH1 expression. In vitro analysis with recombinant DIAPH1 protein showed that PTX and DIAPH1 exhibited additive effects on MT-polymerization, showing that also in a cell-free system DIAPH1 increased the effect of PTX on MT-stability. Together, our data strongly indicate that DIAPH1 increases the response of Ovca cells to PTX by enhancing PTX-mediated MT-stability.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Forminas/biossíntese , Neoplasias Ovarianas/metabolismo , Paclitaxel/toxicidade , Apoptose/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico
2.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34232294

RESUMO

Overexpression of the neuronal InsP3kinase-A increases malignancy of different tumor types. Since InsP3kinase-A highly selectively binds Ins(1,4,5)P3, small molecules competing with Ins(1,4,5)P3 provide a promising approach for the therapeutic targeting of InsP3kinase-A. Based on this consideration, we analyzed the binding mechanism of BIP-4 (2-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]-5, 8-dinitro-1H-benzo[de]isoquinoline-1,3(2H)-dione), a known competitive small-molecule inhibitor of Ins(1,4,5)P3. We tested a total of 80 BIP-4 related compounds in biochemical assays. The results of these experiments revealed that neither the nitrophenyl nor the benzisochinoline group inhibited InsP3kinase-A activity. Moreover, none of the BIP-4 related compounds competed for Ins(1,4,5)P3, demonstrating the high selectivity of BIP-4. To analyze the inhibition mechanism of BIP-4, mutagenesis experiments were performed. The results of these experiments suggest that the nitro groups attached to the benzisochinoline ring compete for binding of Ins(1,4,5)P3 while the nitrophenyl group is associated with amino acids of the ATP-binding pocket. Our results now offer the possibility to optimize BIP-4 to design specific InsP3Kinase-A inhibitors suitable for therapeutic targeting of the enzyme.


Assuntos
Trifosfato de Adenosina/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Naftalimidas/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Pirazóis/farmacologia , Ligação Competitiva , Domínio Catalítico , Desenho Assistido por Computador , Inibidores Enzimáticos/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Naftalimidas/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Pirazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA