Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(8): e0012069, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213442

RESUMO

Enolase is a 47 kDa enzyme that functions within the glycolysis and gluconeogenesis pathways involved in the reversible conversion of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP). However, in the context of host-pathogen interactions, enolase from different species of parasites, fungi and bacteria have been shown to contribute to adhesion processes by binding to proteins of the host extracellular matrix (ECM), such as fibronectin (FN) or laminin (LM). In addition, enolase is a plasminogen (PLG)-binding protein and induces its activation to plasmin, the main protease of the host fibrinolytic system. These secondary 'moonlighting' functions of enolase are suggested to facilitate pathogen migration through host tissues. This study aims to uncover the moonlighting role of enolase from the parasite Fasciola hepatica, shedding light on its relevance to host-parasite interactions in fasciolosis, a global zoonotic disease of increasing concern. A purified recombinant form of F. hepatica enolase (rFhENO), functioning as an active homodimeric glycolytic enzyme of ~94 kDa, was successfully obtained, fulfilling its canonical role. Immunoblotting studies on adult worm extracts showed that the enzyme is present in the tegument and the excretory/secretory products of the parasite, which supports its key role at the host-parasite interface. Confocal immunolocalisation studies of the protein in newly excysted juveniles and adult worms also localised its expression within the parasite tegument. Finally, we showed by ELISA that rFhENO can act as a parasitic adhesin by binding host LM, but not FN. rFhENO also binds PLG and enhances its conversion to plasmin in the presence of the tissue-type and urokinase-type PLG activators (t-PA and u-PA). This moonlighting adhesion-like function of the glycolytic protein enolase could contribute to the mechanisms by which F. hepatica efficiently invades and migrates within its host and encourages further research efforts that are designed to impede this function by vaccination or drug design.


Assuntos
Matriz Extracelular , Fasciola hepatica , Fasciolíase , Interações Hospedeiro-Parasita , Fosfopiruvato Hidratase , Animais , Matriz Extracelular/metabolismo , Fasciola hepatica/enzimologia , Fasciola hepatica/metabolismo , Fasciolíase/parasitologia , Fasciolíase/metabolismo , Fibrinólise , Glicólise , Laminina/metabolismo , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Plasminogênio/metabolismo
2.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633190

RESUMO

Many animals achieve sperm chromatin compaction and stabilisation by replacing canonical histones with sperm nuclear basic proteins (SNBPs) such as protamines during spermatogenesis. Hydrozoan cnidarians and echinoid sea urchins lack protamines and have evolved a distinctive family of sperm-specific histone H2Bs (spH2Bs) with extended N termini rich in SPK(K/R) motifs. Echinoid sperm packaging is regulated by spH2Bs. Their sperm is negatively buoyant and fertilises on the sea floor. Hydroid cnidarians undertake broadcast spawning but their sperm properties are poorly characterised. We show that Hydractinia echinata and H. symbiolongicarpus sperm chromatin possesses higher stability than somatic chromatin, with reduced accessibility to transposase Tn5 integration and to endonucleases in vitro. In contrast, nuclear dimensions are only moderately reduced in mature Hydractinia sperm. Ectopic expression of spH2B in the background of H2B.1 knockdown results in downregulation of global transcription and cell cycle arrest in embryos, without altering their nuclear density. Taken together, SPKK-containing spH2B variants act to stabilise chromatin and silence transcription in Hydractinia sperm with only limited chromatin compaction. We suggest that spH2Bs could contribute to sperm buoyancy as a reproductive adaptation.


Assuntos
Histonas , Hidrozoários , Animais , Masculino , Histonas/metabolismo , Cromatina/metabolismo , Hidrozoários/genética , Sêmen/metabolismo , Espermatozoides/metabolismo , Protaminas/metabolismo
3.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290692

RESUMO

The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory-secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host's immune response to benefit its survival.

4.
HRB Open Res ; 5: 8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677713

RESUMO

Exploratory analysis of cancer consortia data curated by the cBioPortal repository typically requires advanced programming skills and expertise to identify novel genomic prognostic markers that have the potential for both diagnostic and therapeutic exploitation. We developed GNOSIS (GeNomics explOrer using StatistIcal and Survival analysis in R), an R Shiny App incorporating a range of R packages enabling users to efficiently explore and visualise such clinical and genomic data. GNOSIS provides an intuitive graphical user interface and multiple tab panels supporting a range of functionalities, including data upload and initial exploration, data recoding and subsetting, data visualisations, statistical analysis, mutation analysis and, in particular, survival analysis to identify prognostic markers. GNOSIS also facilitates reproducible research by providing downloadable input logs and R scripts from each session, and so offers an excellent means of supporting clinician-researchers in developing their statistical computing skills.

5.
Epidemiol Infect ; 150: e128, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723031

RESUMO

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed. Here, we describe the expression of a highly soluble and functionally active recombinant 3CL-pro using Escherichia coli BL21 cells. We show that the enzyme functions in a dimeric form and exhibits an unexpected inhibitory profile because its activity is potently blocked by serine rather than cysteine protease inhibitors. In addition, we assessed the ability of our 3CL-pro to function as a carrier for the receptor binding domain (RBD) of the Spike protein. The co-expressed chimeric protein, 3CLpro-RBD, did not exhibit 3CL-pro activity, but its enhanced solubility made purification easier and improved RBD antigenicity when tested against serum from vaccinated individuals in ELISAs. Chimeric proteins containing the 3CL-pro could represent an innovative approach to developing new COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Vacinas contra COVID-19 , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeo Hidrolases , SARS-CoV-2/genética
6.
Nucleic Acids Res ; 49(15): 8934-8946, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352093

RESUMO

Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A-H2B and DNA association with the G. lamblia H3-H4 were weaker than those for human H3-H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.


Assuntos
Microscopia Crioeletrônica , Giardia lamblia/ultraestrutura , Histonas/genética , Nucleossomos/ultraestrutura , Sequência de Aminoácidos/genética , Cromatina/genética , Cromatina/ultraestrutura , Giardia lamblia/genética , Histonas/ultraestrutura , Humanos , Estrutura Molecular , Nucleossomos/genética
7.
PLoS One ; 16(2): e0245042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534788

RESUMO

Breast cancer is the leading cause of cancer related death among women. Breast cancers are generally diagnosed and treated based on clinical and histopathological features, along with subtype classification determined by the Prosigna Breast Cancer Prognostic Gene Signature Assay (also known as PAM50). Currently the copy number alteration (CNA) landscape of the tumour is not considered. We set out to examine the role of genomic instability (GI) in breast cancer survival since CNAs reflect GI and correlate with survival in other cancers. We focused on the 70% of breast cancers classified as luminal and carried out a comprehensive survival and association analysis using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data to determine whether CNA Score Quartiles derived from absolute CNA counts are associated with survival. Analysis revealed that patients diagnosed with luminal A breast cancer have a CNA landscape associated with disease specific survival, suggesting that CNA Score can provide a statistically robust prognostic factor. Furthermore, stratification of patients into subtypes based on gene expression has shown that luminal A and B cases overlap, and it is in this region we largely observe luminal A cases with reduced survival outlook. Therefore, luminal A breast cancer patients with quantitatively elevated CNA counts may benefit from more aggressive therapy. This demonstrates how individual genomic landscapes can facilitate personalisation of therapeutic interventions to optimise survival outcomes.


Assuntos
Neoplasias da Mama/genética , Instabilidade Genômica , Adulto , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Bases de Dados Factuais , Feminino , Perfilação da Expressão Gênica , Humanos , Prognóstico , Taxa de Sobrevida
8.
Curr Opin Genet Dev ; 67: 61-66, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285512

RESUMO

Recent studies have highlighted the potential for missense mutations in histones to act as oncogenic drivers, leading to the term 'oncohistones'. While histone proteins are highly conserved, they are encoded by multigene families. There is heterogeneity among these genes at the level of the underlying sequence, the amino acid composition of the encoded histone isoform, and the expression levels. One question that arises, therefore, is whether all histone-encoding genes function equally as oncohistones. In this review, we consider this question and explore what this means in terms of the mechanisms by which oncohistones can exert their effects in chromatin.


Assuntos
Carcinogênese/genética , Histonas/genética , Neoplasias/genética , Oncogenes/genética , Cromatina/genética , Cromossomos/genética , Código das Histonas/genética , Humanos , Mutação de Sentido Incorreto/genética , Isoformas de Proteínas/genética
9.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570834

RESUMO

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Assuntos
Quinase 9 Dependente de Ciclina/genética , Reparo do DNA , DNA/genética , Subunidade 1 do Complexo Mediador/metabolismo , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
Cell ; 178(6): 1284-1286, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491382

RESUMO

A developmental program affecting human face shape is shown by Greenberg et al. (2019) to hinge on the ability to distinguish a single methyl group between two histone variant isoforms and the action of the chromatin-remodeling enzyme SRCAP. This challenges researchers to link atomic structure to a morphological defect.


Assuntos
Cromatina , Histonas , Aminoácidos , Montagem e Desmontagem da Cromatina , Humanos , Isoformas de Proteínas
11.
Nat Commun ; 9(1): 1535, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670105

RESUMO

Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.


Assuntos
Dinoflagellida/metabolismo , Dinoflagellida/virologia , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Virais/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Biologia Computacional , DNA/química , Genoma , Microscopia de Fluorescência , Fenótipo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas Virais/genética
12.
Science ; 355(6322): 245-246, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28104852

Assuntos
Nucleossomos
13.
Genes Dev ; 29(21): 2231-43, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26494712

RESUMO

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células/genética , Células Cultivadas , Cromatina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Camundongos , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína/genética
14.
BMC Biophys ; 8: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815164

RESUMO

The cell contains highly dynamic structures exploiting physical principles of self-organisation at the mesoscale (100 nm to 10 µm). Examples include non-membrane bound cytoplasmic bodies, cytoskeleton-based motor networks and multi-scale chromatin organisation. The challenges of mesoscale self-organisation were discussed at a CECAM workshop in July 2014. Biologists need approaches to observe highly dynamic, low affinity, low specificity associations and to perturb single structures, while biological physicists and biomathematicians need to work closely with biologists to build and validate quantitative models. A table of terminology is included to facilitate multidisciplinary efforts to reveal the richness and diversity of mesoscale cell biology.

15.
FEBS J ; 278(19): 3579-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21810178

RESUMO

Chromatin remodelling is the ATP-dependent change in nucleosome organisation driven by Snf2 family ATPases. The biochemistry of this process depends on the behaviours of ATP-dependent motor proteins and their dynamic nucleosome substrates, which brings significant technical and conceptual challenges. Steady progress has been made in characterising the polypeptides of which these enzymes are comprised. Divergence in the sequences of different subfamilies of Snf2-related proteins suggests that the motors are adapted for different functions. Recently, structural insights have suggested that the Snf2 ATPase acts as a context-sensitive DNA translocase. This may have arisen as a means to enable efficient access to DNA in the high density of the eukaryotic nucleus. How the enzymes engage nucleosomes and how the network of noncovalent interactions within the nucleosome respond to the force applied remains unclear, and it remains prudent to recognise the potential for both DNA distortions and dynamics within the underlying histone octamer structure.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Animais , DNA/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Subcell Biochem ; 50: 55-78, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20012577

RESUMO

Histone H2AX is a histone variant found in almost all eukaryotes. It makes a central contribution to genome stability through its role in the signaling of DNA damage events and by acting as a foundation for the assembly of repair foci. The H2AX protein sequence is highly similar and in some cases overlapping with replication-dependent canonical H2A, yet the H2AX gene and protein structures exhibit a number of features specific to the role of this histone in DNA repair. The most well known of these is a specific serine at the extreme C-terminus of H2AX which is phosphorylated by Phosphoinositide-3-Kinase-related protein Kinases (PIKKs) to generate the gammaH2AX mark. However, recent studies have demonstrated that phosphorylation, ubiquitylation and other post-translational modifications are also crucial for function. H2AX transcript properties suggest a capability to respond to damage events. Furthermore, the biochemical properties of H2AX protein within the nucleosome structure and its distribution within chromatin also point to features linked to its role in the DNA damage response. In particular, the theoretical inter-nucleosomal spacing of H2AX and the potential implications of amino acid residues distinguishing H2AX from canonical H2A in structure and dynamics are considered in detail. This review summarises current understanding of H2AX from a structure-function perspective.


Assuntos
Histonas/química , Histonas/fisiologia , Sequência de Aminoácidos , Histonas/genética , Histonas/metabolismo , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
17.
Nat Struct Mol Biol ; 16(2): 151-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19182801

RESUMO

Nucleosomes are the fundamental subunits of eukaryotic chromatin. They are not static entities, but can undergo a number of dynamic transitions, including spontaneous repositioning along DNA. As nucleosomes are spaced close together within genomes, it is likely that on occasion they approach each other and may even collide. Here we have used a dinucleosomal model system to show that the 147-base-pair (bp) DNA territories of two nucleosomes can overlap extensively. In the situation of an overlap by 44 bp or 54 bp, one histone dimer is lost and the resulting complex can condense to form a compact single particle. We propose a pathway in which adjacent nucleosomes promote DNA unraveling as they approach each other and that this permits their 147-bp territories to overlap, and we suggest that these events may represent early steps in a pathway for nucleosome removal via collision.


Assuntos
DNA/metabolismo , Nucleossomos/metabolismo , Animais , DNA/química , Modelos Moleculares , Nucleossomos/química , Xenopus laevis
18.
J Mol Biol ; 374(3): 563-79, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17949749

RESUMO

Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes. Specific patterns of histone acetylation are found to alter the rate of chromatin remodelling in different ways. For example, histone H3 lysine 14 acetylation acts to increase recruitment of the RSC complex to nucleosomes. However, histone H4 tetra-acetylation alters the spectrum of remodelled products generated by increasing octamer transfer in trans. In contrast, histone H4 tetra-acetylation was also found to reduce the activity of the Chd1 and Isw2 remodelling enzymes by reducing catalytic turnover without affecting recruitment. These observations illustrate a range of different means by which modifications to histones can influence the action of remodelling enzymes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Catálise , Primers do DNA , Proteínas de Ligação a DNA/isolamento & purificação , Hidrólise , Lisina/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Transcrição/isolamento & purificação
19.
Mol Cell Biol ; 27(11): 4037-48, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17387148

RESUMO

Nucleosomes fulfill the apparently conflicting roles of compacting DNA within eukaryotic genomes while permitting access to regulatory factors. Central to this is their ability to stably associate with DNA while retaining the ability to undergo rearrangements that increase access to the underlying DNA. Here, we have studied different aspects of nucleosome dynamics including nucleosome sliding, histone dimer exchange, and DNA wrapping within nucleosomes. We find that alterations to histone proteins, especially the histone tails and vicinity of the histone H3 alphaN helix, can affect these processes differently, suggesting that they are mechanistically distinct. This raises the possibility that modifications to histone proteins may provide a means of fine-tuning specific aspects of the dynamic properties of nucleosomes to the context in which they are located.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Alanina/metabolismo , Animais , DNA/química , DNA/metabolismo , Dimerização , Histonas/genética , Modelos Moleculares , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Exp Cell Res ; 312(14): 2677-86, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16893724

RESUMO

The ability to sense and respond appropriately to genetic lesions is vitally important to maintain the integrity of the genome. Emerging evidence indicates that various modulations to chromatin structure are centrally important to many aspects of the DNA damage response (DDR). Here, we discuss recently described roles for specific post-translational covalent modifications to histone proteins, as well as ATP-dependent chromatin remodelling, in DNA damage signalling and repair of DNA double strand breaks.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/fisiologia , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Histonas/fisiologia , Humanos , Metilação , Modelos Genéticos , Modelos Moleculares , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA