Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Test Anal ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520174

RESUMO

As negative drug tests are frequently a condition for employment, some people who use drugs will try to subvert the testing. In this study, systematic web monitoring was used to investigate how drug test subversion is discussed online. Posts pertaining to drug test subversion were obtained from public websites and the dark web (n = 634, July-December 2021). Most information from public websites came from Twitter (65%), and 94% of dark web posts were from Reddit. The posts were manually coded to extract quantitative and qualitative information about drug test subversion tactics. Most posts discussed urine drug tests (85%), followed by hair (11%) and oral fluid (2%), and the most discussed drugs were marijuana (72%) and cocaine (7.3%). Urine drug test subversion mainly pertained to specimen substitution, with synthetic urine or urine from another person. Another strategy was to mask diluted urine by ingesting creatine. Urine adulteration was rarely discussed. Hair test subversion involved harsh treatments with products such as bleach, baking soda, and/or detergent. Hair removal was also discussed. Oral fluid test subversion focused on removing drugs from the oral cavity through vigorous brushing of teeth and tongue as well as the use of mouthwash, hydrogen peroxide, gum, and commercial detox products. This study highlights subversion strategies used by donors. Although little evidence was provided as to the effectiveness of these strategies, this information may help guide future studies and development of specimen validity testing to minimize the impact of drug test subversion attempts.

2.
J Anal Toxicol ; 48(3): 185-190, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38300512

RESUMO

Total morphine is an important urinary marker of heroin use but can also be present from prescriptions or poppy seed ingestion. In specimens with morphine concentrations consistent with poppy seed ingestion (<4,000 ng/mL), 6-acetylmorphine has served as an important marker of illicit drug use. However, as illicit fentanyl has become increasingly prevalent as a contaminant in the drug supply, fentanyl might be an alternative marker of illicit opioid use instead of or in combination with 6-acetylmorphine. The aim of this study was to quantify opiates, 6-acetylmorphine, fentanyl and fentanyl analogs in 504 morphine-positive (immunoassay 2,000 ng/mL cutoff) urine specimens from workplace drug testing. Almost half (43%) of morphine-positive specimens had morphine concentrations below 4,000 ng/mL, illustrating the need for markers to differentiate illicit drug use. In these specimens, fentanyl (22% co-positivity) was more prevalent than 6-acetylmorphine (12%). Co-positivity of 6-acetylmorphine and semi-synthetic opioids increased with morphine concentration, while fentanyl prevalence did not. In 110 fentanyl-positive specimens, the median norfentanyl concentration (1,520 ng/mL) was 9.6× higher than the median fentanyl concentration (159 ng/mL), illustrating the possibility of using norfentanyl as a urinary marker of fentanyl use. The only fentanyl analog identified was para-fluorofentanyl (n = 50), with results from most specimens consistent with para-fluorofentanyl contamination in illicit fentanyl. The results confirm the use of fentanyl by employees subject to workplace drug testing and highlight the potential of fentanyl and/or norfentanyl as important markers of illicit drug use.


Assuntos
Drogas Ilícitas , Transtornos Relacionados ao Uso de Opioides , Humanos , Entorpecentes , Morfina , Derivados da Morfina , Fentanila , Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Local de Trabalho
3.
J Anal Toxicol ; 48(2): 81-98, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38217086

RESUMO

Products containing cannabidiol (CBD) have proliferated after the 2018 Farm Bill legalized hemp (cannabis with ≤0.3% delta-9-tetrahydrocannabinol (Δ9-THC)). CBD-containing topical products have surged in popularity, but controlled clinical studies on them are limited. This study characterized the effects of five commercially available hemp-derived high CBD/low Δ9-THC topical products. Healthy adults (N = 46) received one of six study drugs: a CBD-containing cream (N = 8), lotion (N = 8), patch (N = 7), balm (N = 8), gel (N = 6) or placebo (N = 9; matched to an active formulation). The protocol included three phases conducted over 17 days: (i) an acute drug application laboratory session, (ii) a 9-day outpatient phase with twice daily product application (visits occurred on Days 2, 3, 7 and 10) (iii) a 1-week washout phase. In each phase, whole blood, oral fluid and urine specimens were collected and analyzed via liquid chromatography with tandem mass spectrometry (LC-MS-MS) for CBD, Δ9-THC and primary metabolites of each and pharmacodynamic outcomes (subjective, cognitive/psychomotor and physiological effects) were assessed. Transdermal absorption of CBD was observed for three active products. On average, CBD/metabolite concentrations peaked after 7-10 days of product use and were highest for the lotion, which contained the most CBD and a permeation enhancer (vitamin E). Δ9-THC/metabolites were below the limit of detection in blood for all products, and no urine samples tested "positive" for cannabis using current US federal workplace drug testing criteria (immunoassay cut-off of 50 ng/mL and confirmatory LC-MS-MS cut-off of 15 ng/mL). Unexpectedly, nine participants (seven lotions, one patch and one gel) exhibited Δ9-THC oral fluid concentrations ≥2 ng/mL (current US federal workplace threshold for a "positive" test). Products did not produce discernable pharmacodynamic effects and were well-tolerated. This study provides important initial data on the acute/chronic effects of hemp-derived topical CBD products, but more research is needed given the diversity of products in this market.


Assuntos
Canabidiol , Cannabis , Alucinógenos , Adulto , Humanos , Cromatografia Líquida , Alimentos
4.
J Anal Toxicol ; 47(8): 719-725, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697897

RESUMO

∆8-Tetrahydrocannabinol (∆8-THC) recently became widely available as an alternative to cannabis. ∆8-THC is likely impairing and poses a threat to workplace and traffic safety. In the present study, the prevalence of ∆8-THC in workplace drug testing was investigated by analyzing 1,504 urine specimens with a positive immunoassay cannabinoid initial test using a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method quantifying 15 cannabinoid analytes after hydrolysis. ∆8-tetrahydrocannabinol-9-carboxylic acid (∆8-THC-COOH) was detected in 378 urine specimens (15 ng/mL cutoff), compared to 1,144 specimens containing ∆9-THC-COOH. The data could be divided into three general groups. There were 964 (76%) ∆9-THC-COOH-dominant (<10% ∆8-THC-COOH) and 139 (11%) ∆8-THC-COOH-dominant (>90% ∆8-THC-COOH) specimens, with the remaining 164 (13%) specimens showing a mixture of both analytes (>90% ∆8-THC-COOH). Similar concentrations of ∆9-THC-COOH (median 187 ng/mL) and ∆8-THC-COOH (150 ng/mL) as the dominant species support the use of similar cutoffs and decision rules for both analytes. Apart from the carboxylic acid metabolites, 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-∆9-THC, n = 1,282), ∆9-tetrahydrocannabivarin-9-carboxylic acid (∆9-THCV-COOH, n = 1,058), ∆9-THC (n = 746) and 7-hydroxy-cannabidiol (7-OH-CBD, n = 506) were the most prevalent analytes. Two specimens (0.13%) contained ≥140 ng/mL ∆9-THC without ∆9-THC-COOH, which could be due to genetic variability in the drug-metabolizing enzyme CYP2C9 or an adulterant targeting ∆9-THC-COOH. The cannabinoid immunoassay was repeated, and five specimens (0.33%) generated negative initial tests despite ∆9-THC-COOH concentrations of 54-1,000 ng/mL, potentially indicative of adulteration. The use of ∆8-THC is widespread in the US population, and all forensic laboratories should consider adding ∆8-THC and/or ∆8-THC-COOH to their scope of testing. Similar urinary concentrations were observed for both analytes, indicating that the decision rules used for ∆9-THC-COOH are also appropriate for ∆8-THC-COOH.


Assuntos
Canabidiol , Canabinoides , Alucinógenos , Dronabinol/metabolismo , Prevalência , Canabinoides/análise , Local de Trabalho
5.
J Anal Toxicol ; 47(7): 632-635, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37440360

RESUMO

Cannabidiol (CBD) has been shown to convert to ∆9-tetrahydrocannabinol (∆9-THC) in acidic environments, raising a concern of conversion when exposed to gastric fluid after consumption. Using synthetic gastric fluid (SGF), it has been demonstrated that the conversion requires surfactants, such as sodium dodecyl sulfate (SDS), due to limited solubility of CBD. Recently, water-compatible nanoemulsions of CBD have been prepared as a means of fortifying beverages and water-based foods with CBD. Since these emulsions contain surfactants as part of their formulation, it is possible that these preparations might enhance the production of ∆9-THC even in the absence of added surfactants. Three THC-free CBD products, an oil, an anhydrous powder and a water-soluble formulation, were incubated for 3 h in SGF without SDS. The water-soluble CBD product produced a dispersion, while the powder and the oil did not mix with the SGF. No THC was detected with the CBD oil (<0.0006% conversion), and up to 0.063% and 0.0045% conversion to ∆9-THC was observed with the water-soluble CBD and the CBD powder, respectively. No formation of ∆8-THC was observed. In comparison, when the nano-formulated CBD was incubated in SGF with 1% SDS, 33-36% conversion to ∆9-THC was observed. Even though the rate of conversion with the water-soluble CBD was at least 100-fold higher compared to the CBD oil, it was still smaller than ∆9-THC levels reported in CBD products labeled "THC-free" or "<0.3% THC" based on the Agricultural Improvement Act of 2018 (the Farm Bill). Assuming a daily CBD dose of around 30 mg/day, it is unlikely that conversion of CBD to ∆9-THC could produce a positive urinary drug test for 11-Nor-9-carboxy-∆9-THC (15 ng/mL cut-off).


Assuntos
Canabidiol , Dronabinol , Pós
6.
J Anal Toxicol ; 47(2): 154-161, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36039690

RESUMO

The purpose of this study was to compare results from five commercial hair testing laboratories conducting workplace drug testing with regard to bias, precision, selectivity and decontamination efficiency. Nine blind hair specimens, including cocaine-positive drug user specimens (some contaminated with methamphetamine) and negative specimens contaminated with cocaine, were submitted in up to five replicates to five different laboratories. All laboratories correctly identified cocaine in all specimens from drug users. For an undamaged hair specimen from a cocaine user, within-laboratory Coefficients of Variation (CVs) of 5-22% (median 8%) were reported, showing that it is possible to produce a homogenous proficiency testing sample from drug user hair. Larger CVs were reported for specimens composed of blended hair (up to 29%) and curly/damaged hair (19-67%). Quantitative results appeared to be method-dependent, and the reported cocaine concentrations varied up to 5-fold between the laboratories, making interlaboratory comparisons difficult. All laboratories reported at least one positive result in specimens contaminated with cocaine powder, followed by sweat and shampoo treatments. Benzoylecgonine, norcocaine, cocaethylene and hydroxylated cocaine metabolites were all detected in cocaine powder-contaminated specimens. This indicates that current industry standards for analyzing and reporting positive cocaine results are not completely effective at identifying external contamination. Metabolite ratios between meta- or para-hydroxy-cocaine and cocaine were 6- and 10-fold lower in contaminated specimens compared to those observed in cocaine user specimens, supporting their potential use in distinguishing samples positive due to contamination and drug use.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Laboratórios , Pós , Transtornos Relacionados ao Uso de Cocaína/diagnóstico , Cabelo
7.
JAMA Netw Open ; 5(7): e2223019, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857320

RESUMO

Importance: Products containing cannabinoids such as cannabidiol (CBD) have proliferated since 2018, when the Agriculture Improvement Act removed hemp (ie, cannabis containing <0.3% Δ9-tetrahydrocannabinol [THC]) from the US controlled substances list. Topical cannabinoid products can be purchased nationwide at retail stores and over the internet, yet research on these products is scarce. Objective: To evaluate the cannabinoid content (ie, CBD and THC) and label accuracy of topical cannabinoid products and to quantify their therapeutic and nontherapeutic claims. Design, Setting, and Participants: Product inclusion criteria included designation as hemp products, intended for topical or transdermal application, and purported to contain cannabinoids (eg, CBD). All unique products available at each retail store were purchased. Online products were identified via Google using relevant keywords (eg, hemp or CBD topical). Various products (eg, lotions and patches) were purchased from retail stores (eg, pharmacies, grocery stores, and cosmetic or beauty stores) in Baltimore, Maryland, and online. Data analysis was performed from March to June 2022. Main Outcomes and Measures: Labeled and actual total amounts of CBD and THC, measured via gas chromatography-mass spectrometry. Therapeutic and nontherapeutic claims and references to the US Food and Drug Administration were quantified. Results: A total of 105 products were purchased, 45 from retail locations and 60 online. Of the 89 products that listed a total amount of CBD on the label, 18% (16 products) were overlabeled (ie, contained >10% less CBD than advertised), 58% (52 products) were underlabeled (ie, contained >10% more CBD than advertised), and 24% (21 products) were accurately labeled. The median (range) percentage deviation between the actual total amount of CBD and the labeled amount was 21% (-75% to 93%) for in-store products and 10% (-96% to 121%) for online products, indicating that products contained more CBD than advertised overall. THC was detected in 37 of 105 products (35%), although all contained less than 0.3% THC. Among the 37 THC-containing products, 4 (11%) were labeled as THC free, 14 (38%) indicated they contained less than 0.3% THC, and 19 (51%) did not reference THC on the label. Overall, 28% of products (29 products) made therapeutic claims, 14% (15 products) made cosmetic claims, and only 47% (49 products) noted that they were not Food and Drug Administration approved. Conclusions and Relevance: In a case series of topical cannabinoid products purchased online and at popular retail stores, products were often inaccurately labeled for CBD and many contained THC. These findings suggest that clinical studies are needed to determine whether topical cannabinoid products with THC can produce psychoactive effects or positive drug tests for cannabis.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Cromatografia Gasosa-Espectrometria de Massas , Alucinógenos/análise , Humanos , Estados Unidos
8.
J Anal Toxicol ; 46(7): 697-704, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35639619

RESUMO

To avoid a positive urine drug test, donors might try to subvert the test, either by adulterating the specimen with a product designed to interfere with testing or by substituting the specimen for a synthetic urine. A market search conducted in December of 2020 identified 3 adulterants and 32 synthetic urines, and a selection was procured based on specific criteria. Samples prepared with the 3 adulterants and 10 synthetic urines were submitted for testing at five forensic drug testing laboratories to perform immunoassay screening, chromatographic confirmation analysis and specimen validity testing (SVT). One adulterant determined to contain iodate reduced THC-COOH concentrations by 65% and the concentrations of 6-acetylmorphine, morphine, oxycodone, oxymorphone, hydrocodone and hydromorphone by 6-27%. Another adulterant determined to contain nitrite reduced THC-COOH concentrations by 22%, while the third did not affect drug screening or confirmatory testing. Both active adulterants could be identified through positive oxidant screens as well as through signal suppression in cloned enzyme donor immunoassay (CEDIA). The synthetic urines could not be identified either through traditional SVT or by the AdultaCheck10 dipstick. The Synthetic UrineCheck dipstick produced a difference in response between the authentic urine specimen and the synthetic urine samples, but the difference was small and difficult to observe. While most synthetic urines now contain uric acid, magnesium and caffeine, the results indicated that a biomarker panel including endogenous and exogenous markers of authentic urine performed well and clearly demonstrated the absence of biomarkers in the synthetic urines. The SVT assay also offers potential targets for future screening assays.


Assuntos
Dronabinol , Detecção do Abuso de Substâncias , Hidrocodona , Imunoensaio , Oximorfona , Detecção do Abuso de Substâncias/métodos
9.
J Anal Toxicol ; 46(8): 866-874, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35260906

RESUMO

Given the recent popularity of cannabidiol (CBD) use and the emergence of ∆8-tetrahydrocannabinol (∆8-THC), the prevalence and concentrations of these and other cannabinoids were investigated in 2,000 regulated and 4,000 non-regulated specimens from workplace drug testing. All specimens were screened using liquid chromatography coupled to mass spectrometry (LC-MS-MS) for the presence of 7-hydroxy-CBD (7-OH-CBD) and ∆9-tetrahydrocannabinol-9-carboxylic acid (∆9-THC-COOH), with a cutoff of 2 ng/mL. Specimens screening positive by LC-MS-MS were analyzed by immunoassay at 20, 50 and 100 ng/mL cutoffs and by an LC-MS-MS confirmation method for 11 cannabinoids and metabolites with a 1 ng/mL cutoff. Using a 1 ng/mL cutoff, 98 (4.9%) regulated and 331 (8.3%) non-regulated specimens were positive for ∆9-THC-COOH. Of these, 64% had concentrations below 15 ng/mL. Similarly, 59 (3.0%) regulated and 162 (4.2%) non-regulated specimens were positive for 7-OH-CBD (n = 210), CBD (n = 120) and/or 7-carboxy-cannabidiol (CBD-COOH, n = 120). The median concentrations of 7-OH-CBD, CBD and CBD-COOH in those 221 specimens were 6.3, 1.1 and 1.2 ng/mL, respectively. ∆8-Tetrahydrocannabinol-9-carboxylic acid (∆8-THC-COOH) was identified in 76 (1.3%) specimens. Parent ∆8-THC is a minor cannabinoid in marijuana, which appears to account for the typically low ∆8-THC-COOH concentrations (median 3.4 ng/mL) in most positive specimens. However, elevated concentrations suggested the use of ∆8-THC-containing products in some cases (range 1.0-415 ng/mL). Although 93% agreement was observed between confirmatory LC-MS-MS (15 ng/mL cutoff) and immunoassay (50 ng/mL cutoff), a false-negative specimen (66 ng/mL ∆9-THC-COOH) was identified.


Assuntos
Canabidiol , Canabinoides , Canabinoides/análise , Ácidos Carboxílicos , Dronabinol/análise , Prevalência , Local de Trabalho
10.
J Anal Toxicol ; 46(5): 494-503, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34089060

RESUMO

The market for products containing cannabidiol (CBD) is booming globally. However, the pharmacokinetics of CBD in different oral formulations and the impact of CBD use on urine drug testing outcomes for cannabis (e.g., 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH)) are understudied. This study characterized the urinary pharmacokinetics of CBD (100 mg) following vaporization or oral administration (including three formulations: gelcap, pharmacy-grade syrup and or Epidiolex) as well as vaporized CBD-dominant cannabis (containing 100 mg CBD and 3.7 mg Δ9-THC) in healthy adults (n = 18). A subset of participants (n = 6) orally administered CBD syrup following overnight fasting (versus low-fat breakfast). Urine specimens were collected before and for 58 h after dosing on a residential research unit. Immunoassay (IA) screening (cutoffs: 20, 50 and 100 ng/mL) for Δ9-THCCOOH was performed, and quantitation of cannabinoids was completed via LC-MS-MS. Urinary CBD concentrations (ng/mL) were higher after oral (mean Cmax: 734; mean Tmax: 4.7 h, n = 18) versus vaporized CBD (mean Cmax: 240; mean Tmax: 1.3 h, n = 18), and oral dose formulation significantly impacted mean Cmax (Epidiolex = 1,274 ng/mL, capsule = 776 ng/mL, syrup = 151 ng/mL, n = 6/group) with little difference in Tmax. Overnight fasting had limited impact on CBD excretion in urine, and there was no evidence of CBD conversion to Δ8- or Δ9-THC in any route or formulation in which pure CBD was administered. Following acute administration of vaporized CBD-dominant cannabis, 3 of 18 participants provided a total of six urine samples in which Δ9-THCCOOH concentrations ≥15 ng/mL. All six specimens screened positive at a 20 ng/mL IA cutoff, and two of six screened positive at a 50 ng/mL cutoff. These data show that absorption/elimination of CBD is impacted by drug formulation, route of administration and gastric contents. Although pure CBD is unlikely to impact drug testing, it is possible that hemp products containing low amounts of Δ9-THC may produce a cannabis-positive urine drug test.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Administração Oral , Adulto , Analgésicos , Canabidiol/farmacocinética , Canabinoides/urina , Dronabinol/urina , Humanos
11.
Drug Alcohol Depend ; 211: 107937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247649

RESUMO

INTRODUCTION: The use and availability of oral and inhalable products containing cannabidiol (CBD) as the principal constituent has increased with expanded cannabis/hemp legalization. However, few controlled clinical laboratory studies have evaluated the pharmacodynamic effects of oral or vaporized CBD or CBD-dominant cannabis. METHODS: Eighteen healthy adults (9 men; 9 women) completed four, double-blind, double-dummy, drug administration sessions. Sessions were separated by ≥1 week and included self-administration of 100 mg oral CBD, 100 mg vaporized CBD, vaporized CBD-dominant cannabis (100 mg CBD; 3.7 mg THC), and placebo. Study outcomes included: subjective drug effects, vital signs, cognitive/psychomotor performance, and whole blood THC and CBD concentrations. RESULTS: Vaporized CBD and CBD-dominant cannabis increased ratings on several subjective items (e.g., Like Drug Effect) relative to placebo. Subjective effects did not differ between oral CBD and placebo and were generally higher for CBD-dominant cannabis compared to vaporized CBD. CBD did not increase ratings for several items typically associated with acute cannabis/THC exposure (e.g., Paranoid). Women reported qualitatively higher ratings for Pleasant Drug Effect than men after vaporized CBD and CBD-dominant cannabis use. CBD-dominant cannabis increased heart rate compared to placebo. Cognitive/psychomotor impairment was not observed in any drug condition. CONCLUSIONS: Vaporized CBD and CBD-dominant cannabis produced discriminable subjective drug effects, which were sometimes stronger in women, but did not produce cognitive/psychomotor impairment. Subjective effects of oral CBD did not differ from placebo. Future research should further elucidate the subjective effects of various types of CBD products (e.g., inhaled, oral, topical), which appear to be distinct from THC-dominant products.


Assuntos
Canabidiol/administração & dosagem , Emoções/efeitos dos fármacos , Uso da Maconha/psicologia , Uso da Maconha/tendências , Desempenho Psicomotor/efeitos dos fármacos , Administração Oral , Adulto , Canabidiol/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Dronabinol/administração & dosagem , Dronabinol/farmacologia , Emoções/fisiologia , Feminino , Humanos , Masculino , Uso da Maconha/epidemiologia , Nebulizadores e Vaporizadores/tendências , Desempenho Psicomotor/fisiologia , Volatilização
12.
J Anal Toxicol ; 37(8): 486-94, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23946451

RESUMO

Hydrocodone (HC) is a highly misused prescription drugs in the USA. Interpretation of urine tests for HC is complicated by its metabolism to two metabolites, hydromorphone (HM) and dihydrocodeine (DHC), which are also available commercially and are misused. Currently, there is interest in including HC and HM in the federal workplace drug-testing programs. This study characterized the disposition of HC in human urine. Twelve healthy, drug-free, adults were administered a single, oral 20 mg immediate-release dose of HC in a controlled clinical setting. Urine specimens were collected at timed intervals for up to 52 h and analyzed by LC-MS-MS (limit of quantitation = 50 ng/mL) with and without enzymatic hydrolysis. All specimens were also analyzed for creatinine and specific gravity (SG). HC and norhydrocodone (NHC) appeared within 2 h followed by HM and DHC. Peak concentrations of HC and metabolites occurred at 3-9 h. Peak hydrolyzed concentrations were in the order: NHC > HC > HM > DHC. Only HM was excreted extensively as a conjugated metabolite. At a cutoff concentration of 50 ng/mL, detection times were ∼28 h for HC, 40 h for NHC, 26 h for HM and 16 h for DHC. Some specimens did not contain HC, but most contained NHC, thereby facilitating interpretation that HC was the administered drug. Creatinine and SG measures were highly correlated. Creatinine corrections of HC urinary data had variable effects of lowering or raising concentrations. These data suggest that drug-testing requirements for HC should include a hydrolysis step and a test for HM.


Assuntos
Analgésicos Opioides/farmacocinética , Codeína/análogos & derivados , Hidrocodona/farmacocinética , Hidromorfona/urina , Uso Indevido de Medicamentos sob Prescrição , Detecção do Abuso de Substâncias/métodos , Administração Oral , Adulto , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/urina , Cromatografia Líquida , Codeína/urina , Creatinina/urina , Feminino , Humanos , Hidrocodona/administração & dosagem , Hidrocodona/urina , Hidrólise , Limite de Detecção , Masculino , Taxa de Depuração Metabólica , Espectrometria de Massas em Tandem , Distribuição Tecidual , Adulto Jovem
13.
J Anal Toxicol ; 37(5): 255-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23609023

RESUMO

The ongoing epidemic of prescription opioid abuse in the United States has prompted interest in semi-synthetic opioids in the federal workplace drug testing program. This study characterized the metabolism and disposition of oxycodone (OC) in human urine. Twelve healthy adults were administered a single oral 20 mg dose of OC in a controlled clinical setting. Urine specimens were collected at timed intervals up to 52 h and analyzed by liquid chromatography-tandem mass spectrometry (limit of quantitation: 50 ng/mL) for OC, oxymorphone (OM), noroxycodone (NOC) and noroxymorphone (NOM) with and without enzymatic hydrolysis. OC and NOC appeared in urine within 2 h, followed by OM and NOM. Peak concentrations of OC and metabolites occurred between 3 and 19 h. Mean peak concentrations in hydrolyzed urine were in the following order: NOC > OC > OM > NOM. Only OM appeared to be excreted extensively as a conjugated metabolite. OC concentrations declined more quickly than NOC and OM. At a cutoff concentration of 50 ng/mL, detection times were approximately 30 h for OC and 40 h for NOC and OM. Some specimens did not contain OC, but most contained NOC, thereby facilitating interpretation that OC was the administered drug; however, five specimens contained only OM. These data provide information that should facilitate the selection of appropriate test parameters for OC in urine and assist in the interpretation of test results.


Assuntos
Analgésicos Opioides/farmacocinética , Oxicodona/farmacocinética , Detecção do Abuso de Substâncias/métodos , Adulto , Analgésicos Opioides/urina , Cromatografia Líquida de Alta Pressão , Emprego , Feminino , Humanos , Masculino , Morfinanos/urina , Oxicodona/urina , Oximorfona/urina , Espectrometria de Massas em Tandem , Fatores de Tempo , Local de Trabalho , Adulto Jovem
14.
J Anal Toxicol ; 36(6): 399-404, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22586207

RESUMO

In urine drug testing, enantiomer analysis is used to determine whether a positive methamphetamine result could be due to use of an over-the-counter (OTC) nasal inhaler containing L-methamphetamine. D-methamphetamine at more than 20% of the total is considered indicative of a source other than an OTC product. This interpretation is based on a 1991 Department of Health and Human Services (HHS) Technical Advisory. We performed studies to verify the methamphetamine enantiomer content of current OTC nasal inhalers and to evaluate current laboratory testing capabilities. This study demonstrated that OTC inhalers contain less than 1% D-methamphetamine. A proficiency testing (PT) set for HHS-certified laboratories performing methamphetamine enantiomer testing found D-methamphetamine percentages that were consistently 1 to 3% higher than theoretical due to optical impurity of the derivatizing reagent N-trifluoroacetyl-L-prolyl chloride (L-TPC). The PT results also demonstrate that laboratories can accurately determine 20% D-methamphetamine in samples with total methamphetamine concentrations down to 250 ng/mL. Based on these studies, the guideline of >20% D-methamphetamine is appropriate for interpreting results obtained using current laboratory methods.


Assuntos
Estimulantes do Sistema Nervoso Central/urina , Guias como Assunto , Metanfetamina/urina , Detecção do Abuso de Substâncias , Administração por Inalação , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacocinética , Contaminação de Medicamentos , Controle de Medicamentos e Entorpecentes/métodos , Humanos , Imunoensaio , Indicadores e Reagentes/química , Ensaio de Proficiência Laboratorial , Limite de Detecção , Metanfetamina/administração & dosagem , Metanfetamina/química , Metanfetamina/farmacocinética , Descongestionantes Nasais/administração & dosagem , Descongestionantes Nasais/química , Descongestionantes Nasais/farmacocinética , Descongestionantes Nasais/urina , Medicamentos sem Prescrição/administração & dosagem , Medicamentos sem Prescrição/análise , Medicamentos sem Prescrição/química , Medicamentos sem Prescrição/farmacocinética , Prolina/análogos & derivados , Prolina/química , Estereoisomerismo , Detecção do Abuso de Substâncias/normas , Estados Unidos , United States Dept. of Health and Human Services , United States Substance Abuse and Mental Health Services Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA