Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 6656, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863899

RESUMO

Evapotranspiration (ET) is a key process linking surface and atmospheric energy budgets, yet its drivers and patterns across wetlandscapes are poorly understood worldwide. Here we assess the ET dynamics in 12 wetland complexes across South America, revealing major differences under temperate, tropical, and equatorial climates. While net radiation is a dominant driver of ET seasonality in most environments, flooding also contributes strongly to ET in tropical and equatorial wetlands, especially in meeting the evaporative demand. Moreover, significant water losses through wetlands and ET differences between wetlands and uplands occur in temperate, more water-limited environments and in highly flooded areas such as the Pantanal, where slow river flood propagation drives the ET dynamics. Finally, floodplain forests produce the greatest ET in all environments except the Amazon River floodplains, where upland forests sustain high rates year round. Our findings highlight the unique hydrological functioning and ecosystem services provided by wetlands on a continental scale.


Assuntos
Ecossistema , Áreas Alagadas , Florestas , América do Sul , Água
3.
Surv Geophys ; 44(1): 43-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35462853

RESUMO

Abstract: The African continent hosts some of the largest freshwater systems worldwide, characterized by a large distribution and variability of surface waters that play a key role in the water, energy and carbon cycles and are of major importance to the global climate and water resources. Freshwater availability in Africa has now become of major concern under the combined effect of climate change, environmental alterations and anthropogenic pressure. However, the hydrology of the African river basins remains one of the least studied worldwide and a better monitoring and understanding of the hydrological processes across the continent become fundamental. Earth Observation, that offers a cost-effective means for monitoring the terrestrial water cycle, plays a major role in supporting surface hydrology investigations. Remote sensing advances are therefore a game changer to develop comprehensive observing systems to monitor Africa's land water and manage its water resources. Here, we review the achievements of more than three decades of advances using remote sensing to study surface waters in Africa, highlighting the current benefits and difficulties. We show how the availability of a large number of sensors and observations, coupled with models, offers new possibilities to monitor a continent with scarce gauged stations. In the context of upcoming satellite missions dedicated to surface hydrology, such as the Surface Water and Ocean Topography (SWOT), we discuss future opportunities and how the use of remote sensing could benefit scientific and societal applications, such as water resource management, flood risk prevention and environment monitoring under current global change. Article Highlights: The hydrology of African surface water is of global importance, yet it remains poorly monitored and understoodComprehensive review of remote sensing and modeling advances to monitor Africa's surface water and water resourcesFuture opportunities with upcoming satellite missions and to translate scientific advances into societal applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA