Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 16(5): e8982, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463598

RESUMO

Comprehensive molecular-level models of human metabolism have been generated on a cellular level. However, models of whole-body metabolism have not been established as they require new methodological approaches to integrate molecular and physiological data. We developed a new metabolic network reconstruction approach that used organ-specific information from literature and omics data to generate two sex-specific whole-body metabolic (WBM) reconstructions. These reconstructions capture the metabolism of 26 organs and six blood cell types. Each WBM reconstruction represents whole-body organ-resolved metabolism with over 80,000 biochemical reactions in an anatomically and physiologically consistent manner. We parameterized the WBM reconstructions with physiological, dietary, and metabolomic data. The resulting WBM models could recapitulate known inter-organ metabolic cycles and energy use. We also illustrate that the WBM models can predict known biomarkers of inherited metabolic diseases in different biofluids. Predictions of basal metabolic rates, by WBM models personalized with physiological data, outperformed current phenomenological models. Finally, integrating microbiome data allowed the exploration of host-microbiome co-metabolism. Overall, the WBM reconstructions, and their derived computational models, represent an important step toward virtual physiological humans.


Assuntos
Microbioma Gastrointestinal , Redes e Vias Metabólicas/genética , Metaboloma , Metabolômica/métodos , Biologia de Sistemas/métodos , Algoritmos , Biomarcadores/metabolismo , Simulação por Computador , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Feminino , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Metaboloma/genética , Especificidade de Órgãos , Proteômica
3.
J Cheminform ; 6(1): 2, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468196

RESUMO

BACKGROUND: An important step in the reconstruction of a metabolic network is annotation of metabolites. Metabolites are generally annotated with various database or structure based identifiers. Metabolite annotations in metabolic reconstructions may be incorrect or incomplete and thus need to be updated prior to their use. Genome-scale metabolic reconstructions generally include hundreds of metabolites. Manually updating annotations is therefore highly laborious. This prompted us to look for open-source software applications that could facilitate automatic updating of annotations by mapping between available metabolite identifiers. We identified three applications developed for the metabolomics and chemical informatics communities as potential solutions. The applications were MetMask, the Chemical Translation System, and UniChem. The first implements a "metabolite masking" strategy for mapping between identifiers whereas the latter two implement different versions of an InChI based strategy. Here we evaluated the suitability of these applications for the task of mapping between metabolite identifiers in genome-scale metabolic reconstructions. We applied the best suited application to updating identifiers in Recon 2, the latest reconstruction of human metabolism. RESULTS: All three applications enabled partially automatic updating of metabolite identifiers, but significant manual effort was still required to fully update identifiers. We were able to reduce this manual effort by searching for new identifiers using multiple types of information about metabolites. When multiple types of information were combined, the Chemical Translation System enabled us to update over 3,500 metabolite identifiers in Recon 2. All but approximately 200 identifiers were updated automatically. CONCLUSIONS: We found that an InChI based application such as the Chemical Translation System was better suited to the task of mapping between metabolite identifiers in genome-scale metabolic reconstructions. We identified several features, however, that could be added to such an application in order to tailor it to this task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA