Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3003, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194033

RESUMO

Bacterial kidney disease (BKD) is a chronic bacterial disease affecting both wild and farmed salmonids. The causative agent for BKD is the Gram-positive fish pathogen Renibacterium salmoninarum. As treatment and prevention of BKD have proven to be difficult, it is important to know and identify the key bacterial proteins that interact with the host. We used subcellular fractionation to report semi-quantitative data for the cytosolic, membrane, extracellular, and membrane vesicle (MV) proteome of R. salmoninarum. These data can aid as a backbone for more targeted experiments regarding the development of new drugs for the treatment of BKD. Further analysis was focused on the MV proteome, where both major immunosuppressive proteins P57/Msa and P22 and proteins involved in bacterial adhesion were found in high abundance. Interestingly, the P22 protein was relatively enriched only in the extracellular and MV fraction, implicating that MVs may play a role in host-pathogen interaction. Compared to the other subcellular fractions, the MVs were also relatively enriched in lipoproteins and all four cell wall hydrolases belonging to the New Lipoprotein C/Protein of 60 kDa (NlpC/P60) family were detected, suggesting an involvement in the formation of the MVs.


Assuntos
Vesículas Citoplasmáticas/fisiologia , Proteoma/genética , Proteômica , Virulência , Animais , Aderência Bacteriana/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Vesículas Citoplasmáticas/metabolismo , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Interações Hospedeiro-Parasita , Nefropatias/microbiologia , Nefropatias/veterinária , Lipoproteínas/metabolismo , Renibacterium/citologia , Renibacterium/genética , Renibacterium/patogenicidade , Frações Subcelulares/fisiologia , Virulência/genética
2.
J Biol Chem ; 296: 100499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667547

RESUMO

Human PrP (huPrP) is a high-affinity receptor for oligomeric amyloid ß (Aß) protein aggregates. Binding of Aß oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer's disease, while an N-terminal soluble fragment of huPrP can sequester Aß oligomers and reduce their toxicity. Synthetic oligomeric Aß species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aß oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aß(1-42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aß(1-42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial ß-strand content. Importantly, not all Aß(1-42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aß fibrils suggests that the Aß oligomer preparation represents a heterogeneous mixture of ß-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aß to adopt variable ß-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aß oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aß(1-42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous ß-strand-rich assemblies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Amiloide/química , Proteínas Priônicas/química , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Priônicas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA