Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 29(16)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639093

RESUMO

BackgroundMpox, caused by monkeypox virus (MPXV), was considered a rare zoonotic disease before May 2022, when a global epidemic of cases in non-endemic countries led to the declaration of a Public Health Emergency of International Concern. Cases of mpox in Ireland, a country without previous mpox reports, could reflect extended local transmission or multiple epidemiological introductions.AimTo elucidate the origins and molecular characteristics of MPXV circulating in Ireland between May 2022 and October 2023.MethodsWhole genome sequencing of MPXV from 75% of all Irish mpox cases (182/242) was performed and compared to sequences retrieved from public databases (n = 3,362). Bayesian approaches were used to infer divergence time between sequences from different subclades and evaluate putative importation events from other countries.ResultsOf 242 detected mpox cases, 99% were males (median age: 35 years; range: 15-60). All 182 analysed genomes were assigned to Clade IIb and, presence of 12 distinguishable subclades suggests multiple introductions into Ireland. Estimation of time to divergence of subclades further supports the hypothesis for multiple importation events from numerous countries, indicative of extended and sustained international spread of mpox. Further analysis of sequences revealed that 92% of nucleotide mutations were from cytosine to thymine (or from guanine to adenine), leading to a high number of non-synonymous mutations across subclades; mutations associated with tecovirimat resistance were not observed.ConclusionWe provide insights into the international transmission dynamics supporting multiple introductions of MPXV into Ireland. Such information supported the implementation of evidence-informed public health control measures.


Assuntos
Monkeypox virus , Mpox , Masculino , Humanos , Adulto , Feminino , Irlanda/epidemiologia , Monkeypox virus/genética , Teorema de Bayes , Mpox/diagnóstico , Mpox/epidemiologia , Surtos de Doenças
2.
Emerg Infect Dis ; 29(4): 751-760, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36957994

RESUMO

During April-July 2022, outbreaks of severe acute hepatitis of unknown etiology (SAHUE) were reported in 35 countries. Five percent of cases required liver transplantation, and 22 patients died. Viral metagenomic studies of clinical samples from SAHUE cases showed a correlation with human adenovirus F type 41 (HAdV-F41) and adeno-associated virus type 2 (AAV2). To explore the association between those DNA viruses and SAHUE in children in Ireland, we quantified HAdV-F41 and AAV2 in samples collected from a wastewater treatment plant serving 40% of Ireland's population. We noted a high correlation between HAdV-F41 and AAV2 circulation in the community and SAHUE clinical cases. Next-generation sequencing of the adenovirus hexon in wastewater demonstrated HAdV-F41 was the predominant HAdV type circulating. Our environmental analysis showed increased HAdV-F41 and AAV2 prevalence in the community during the SAHUE outbreak. Our findings highlight how wastewater sampling could aid in surveillance for respiratory adenovirus species.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Hepatite , Infecções Respiratórias , Humanos , Criança , Águas Residuárias , Irlanda/epidemiologia , Adenovírus Humanos/genética , Hepatite/epidemiologia , Surtos de Doenças , Doença Aguda , Infecções por Adenovirus Humanos/epidemiologia , Filogenia , Infecções Respiratórias/epidemiologia
3.
J Gen Virol ; 104(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787173

RESUMO

A novel proprietary formulation, ViruSAL, has previously been demonstrated to inhibit diverse enveloped viral infections in vitro and in vivo. We evaluated the ability of ViruSAL to inhibit SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infectivity, using physiologically relevant models of the human bronchial epithelium, to model early infection of the upper respiratory tract. ViruSAL potently inhibited SARS-CoV-2 infection of human bronchial epithelial cells cultured as an air-liquid interface (ALI) model, in a concentration- and time-dependent manner. Viral infection was completely inhibited when ViruSAL was added to bronchial airway models prior to infection. Importantly, ViruSAL also inhibited viral infection when added to ALI models post-infection. No evidence of cellular toxicity was detected in ViruSAL-treated cells at concentrations that completely abrogated viral infectivity. Moreover, intranasal instillation of ViruSAL to a rat model did not result in any toxicity or pathological changes. Together these findings highlight the potential for ViruSAL as a novel and potent antiviral for use within clinical and prophylactic settings.


Assuntos
Antivirais , COVID-19 , Humanos , Ratos , Animais , Antivirais/farmacologia , SARS-CoV-2 , Células Epiteliais , Brônquios
4.
Sci Total Environ ; 838(Pt 2): 155828, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588817

RESUMO

SARS-CoV-2 RNA quantification in wastewater is an important tool for monitoring the prevalence of COVID-19 disease on a community scale which complements case-based surveillance systems. As novel variants of concern (VOCs) emerge there is also a need to identify the primary circulating variants in a community, accomplished to date by sequencing clinical samples. Quantifying variants in wastewater offers a cost-effective means to augment these sequencing efforts. In this study, SARS-CoV-2 N1 RNA concentrations and daily loadings were determined and compared to case-based data collected as part of a national surveillance programme to determine the validity of wastewater surveillance to monitor infection spread in the greater Dublin area. Further, sequencing of clinical samples was conducted to determine the primary SARS-CoV-2 lineages circulating in Dublin. Finally, digital PCR was employed to determine whether SARS-CoV-2 VOCs, Alpha and Delta, were quantifiable from wastewater. No lead or lag time was observed between SARS-CoV-2 wastewater and case-based data and SARS-CoV-2 trends in Dublin wastewater significantly correlated with the notification of confirmed cases through case-based surveillance preceding collection with a 5-day average. This demonstrates that viral RNA in Dublin's wastewater mirrors the spread of infection in the community. Clinical sequence data demonstrated that increased COVID-19 cases during Ireland's third wave coincided with the introduction of the Alpha variant, while the fourth wave coincided with increased prevalence of the Delta variant. Interestingly, the Alpha variant was detected in Dublin wastewater prior to the first genome being sequenced from clinical samples, while the Delta variant was identified at the same time in clinical and wastewater samples. This work demonstrates the validity of wastewater surveillance for monitoring SARS-CoV-2 infections and also highlights its effectiveness in identifying circulating variants which may prove useful when sequencing capacity is limited.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Irlanda/epidemiologia , RNA Viral , SARS-CoV-2/genética , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Nano Lett ; 21(24): 10149-10156, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881894

RESUMO

Direct contact with contaminated surfaces in frequently accessed areas is a confirmed transmission mode of SARS-CoV-2. To address this challenge, we have developed novel plastic films with enhanced effectiveness for deactivating the SARS-CoV-2 by means of nanomaterials combined with nanopatterns. Results prove that these functionalized films are able to deactivate SARS-CoV-2 by up to 2 orders of magnitude within the first hour compared to untreated films, thus reducing the likelihood of transmission. Nanopatterns can enhance the antiviral effectiveness by increasing the contact area between nanoparticles and virus. Significantly, the established process also considers the issue of scalability for mass manufacturing. A low-cost process for nanostructured antiviral films integrating ultrasonic atomization spray coating and thermal nanoimprinting lithography is proposed. A further in-depth investigation should consider the size, spacing, and shape of nanopillars, the type and concentration of nanoparticles, and the scale-up and integration of these processes with manufacturing for optimal antiviral effectiveness.


Assuntos
COVID-19 , Nanoestruturas , Antivirais/farmacologia , Humanos , Plásticos , SARS-CoV-2
6.
Water Res ; 201: 117090, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111729

RESUMO

The introduction of SARS-CoV-2 containing human stool and sewage into water bodies may raise public health concerns. However, assessment of public health risks by faecally contaminated water is limited by a lack of knowledge regarding the persistence of infectious SARS-CoV-2 in water. In the present study the decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA were determined in river and seawater at 4 and 20°C. These decay rates were compared to S. typhimurium bacteriophage MS2 and pepper mild mottle virus (PMMoV). Persistence of viable SARS-CoV-2 was temperature dependent, remaining infectious for significantly longer periods of time in both freshwater and seawater at 4°C than at 20°C. T90 for infectious SARS-CoV-2 in river water was 2.3 days and 3.8 days at 20°C and 4°C, respectively. The T90 values were 1.1 days and 2.2 days in seawater at 20°C and 4°C, respectively. In contrast to the rapid inactivation of infectious SARS-CoV-2 in river and sea water, viral RNA was relatively stable. The RNA decay rates were increased in non-sterilised river and seawater, presumably due to the presence of microbiota. The decay rates of infectious MS2, MS2 RNA and PMMoV RNA differed significantly from the decay rate of SARS-CoV-2 RNA, suggesting that their use as surrogate markers for the persistence of SARS-CoV-2 in the environment is limited.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Rios , Águas Residuárias
7.
PLoS One ; 16(6): e0253347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161337

RESUMO

The unprecedented global COVID-19 pandemic has prompted a desperate international effort to accelerate the development of anti-viral candidates. For unknown reasons, COVID-19 infections are associated with adverse cardiovascular complications, implicating that vascular endothelial cells are essential in viral propagation. The etiological pathogen, SARS-CoV-2, has a higher reproductive number and infection rate than its predecessors, indicating it possesses novel characteristics that infers enhanced transmissibility. A unique K403R spike protein substitution encodes an Arg-Gly-Asp (RGD) motif, introducing a potential role for RGD-binding host integrins. Integrin αVß3 is widely expressed across the host, particularly in the endothelium, which acts as the final barrier before microbial entry into the bloodstream. This mutagenesis creates an additional binding site, which may be sufficient to increase SARS-CoV-2 pathogenicity. Here, we investigate how SARS-CoV-2 passes from the epithelium to endothelium, the effects of αVß3 antagonist, Cilengitide, on viral adhesion, vasculature permeability and leakage, and also report on a simulated interaction between the viral and host protein in-silico.


Assuntos
Endotélio Vascular/virologia , Integrina alfaVbeta3/metabolismo , SARS-CoV-2/patogenicidade , Venenos de Serpentes/farmacologia , Antígenos CD/metabolismo , Sítios de Ligação , COVID-19/metabolismo , COVID-19/fisiopatologia , Células CACO-2 , Caderinas/metabolismo , Simulação por Computador , Endotélio Vascular/citologia , Endotélio Vascular/fisiopatologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/química , Modelos Moleculares , Mutação , Permeabilidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
8.
J Gen Virol ; 101(10): 1090-1102, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692647

RESUMO

Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.


Assuntos
Antivirais , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vírus , Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Lipídeos , Camundongos , Internalização do Vírus
9.
Mar Genomics ; 53: 100753, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32057717

RESUMO

The beadlet anemone Actinia equina (L.) (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most familiar organisms of the North European intertidal zone. Once considered a single, morphologically variable species across northern Europe, it is now recognised as one member of a variable species complex. Previous studies of distribution, aggression, allozymes and mitochondrial DNA suggest that the diversity in form and colour within A. equina may hide still unrecognised species diversity. To empower further study of A. equina population genetics and systematics, we sequenced (PacBio Sequel) the genome of a single A. equina individual to produce a high-quality genome assembly (contig N50 = 492,607 bp, 1485 contigs, number of protein coding genes = 47,671, 97% BUSCO completeness). There is debate as to whether A. equina reproduces solely asexually, since no reliable, consistent evidence of sexual reproduction has been found. To gain further insight, we examined the genome for evidence of a 'meiotic toolkit' - genes believed to be found consistently in sexually reproducing organisms - and demonstrate that the A. equina genome appears not to have this full complement. Additionally, Smudgeplot analysis, coupled with high haplotype diversity, indicates this genome assembly to be of ambiguous ploidy, suggesting that A. equina may not be diploid. The suggested polyploid nature of this species coupled with the deficiency in meiotic toolkit genes, indicates that further field and laboratory studies of this species is warranted to understand how this species reproduces and what role ploidy may play in speciation within this speciose genus.


Assuntos
Genoma , Meiose , Anêmonas-do-Mar/genética , Animais , Reprodução/genética , País de Gales
10.
Sci Rep ; 9(1): 7903, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133714

RESUMO

Viruses and bacteria colonize hosts by invading epithelial barriers. Recent studies have shown that interactions between the microbiota, pathogens and the host can potentiate infection through poorly understood mechanisms. Here, we investigated whether diverse bacterial species could modulate virus internalization into host cells, often a rate-limiting step in establishing infections. Lentiviral pseudoviruses expressing influenza, measles, Ebola, Lassa or vesicular stomatitis virus envelope glycoproteins enabled us to study entry of viruses that exploit diverse internalization pathways. Salmonella Typhimurium, Escherichia coli and Pseudomonas aeruginosa significantly increased viral uptake, even at low bacterial frequencies. This did not require bacterial contact with or invasion of host cells. Studies determined that the bacterial antigen responsible for this pro-viral activity was the Toll-Like Receptor 5 (TLR5) agonist flagellin. Exposure to flagellin increased virus attachment to epithelial cells in a temperature-dependent manner via TLR5-dependent activation of NF-ΚB. Importantly, this phenotype was both long lasting and detectable at low multiplicities of infection. Flagellin is shed from bacteria and our studies uncover a new bystander role for this protein in regulating virus entry. This highlights a new aspect of viral-bacterial interplay with significant implications for our understanding of polymicrobial-associated pathogenesis.


Assuntos
Antígenos de Bactérias/metabolismo , Coinfecção/imunologia , Flagelina/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Internalização do Vírus , Células A549 , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Coinfecção/microbiologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Pulmão/citologia , Permeabilidade , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 5 Toll-Like/agonistas , Receptor 5 Toll-Like/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Viroses/imunologia , Viroses/virologia
11.
Open Vet J ; 7(2): 126-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652978

RESUMO

Jacob sheep (Ovis aries) are a pedigree breed known for their "polycerate" (multihorned) phenotype. We describe a four-horned Jacob lamb that exhibited progressive congenital hindlimb ataxia and paresis, and was euthanased four weeks post-partum. Necropsy and CT-scan revealed deformity and asymmetry of the occipital condyles, causing narrowing of the foramen magnum and spinal cord compression. Histopathology demonstrated Wallerian degeneration of the cervical spinal cord at the level of the foramen magnum. These findings are consistent with occipital condylar dysplasia. This condition has been infrequently reported in the literature as a suspected heritable disease of polycerate Jacob sheep in the USA, and is assumed to arise during selection for the polycerate trait. This is the first reported case in European-bred Jacob sheep. Occipital condylar dysplasia should be considered as a differential diagnosis in polycerate Jacob lambs showing ataxia. It is important to raise awareness of this disease due to its suspected heritability and link to the popular polycerate trait.

12.
Liver Int ; 36(10): 1418-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27045383

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) causes neuropsychiatric impairment and fatigue with recent studies suggesting HCV invasion of the central nervous system (CNS). Our previous finding that endothelial cells from the blood-brain barrier support HCV infection warrants further investigation to elucidate whether the CNS can serve as a reservoir for independent HCV evolution. METHODS: Cerebrospinal fluid (CSF) and plasma from six HCV-infected patients without liver disease or co-morbidities together with plasma from six healthy subjects were profiled for markers of immune activation and viral quasispecies measured by deep sequencing. Unsupervised data analyses were used to identify any associations between cytokine activation markers and clinical outcomes. RESULTS: Four of six HCV-infected patients showed significant evidence of cognitive dysfunction and fatigue. Deep sequencing revealed independent viral evolution within the CNS of two cognitively impaired patients. Principal component analysis of peripheral cytokines demonstrated that individuals without cognitive impairment clustered together while a distinct cytokine pattern emerged with patients exhibiting cognitive dysfunction and fatigue. CONCLUSIONS: Deep sequencing demonstrated unique viral variants in the CSF of two cognitively impaired patients consistent with CNS replication or sequestration. Meanwhile, compartmentalization was absent in infected patients with no neurocognitive impairment. Examination of cytokine profiles in HCV-infected patients with cognitive dysfunction revealed elevated peripheral cytokine levels resulting in a distinct cytokine profile that may be related to cognitive impairment or viral penetration into the CNS. Further studies to determine the significance of unique HCV variants within the CNS are warranted.


Assuntos
Disfunção Cognitiva/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Hepacivirus/genética , Hepatite C/líquido cefalorraquidiano , RNA Viral/líquido cefalorraquidiano , Adulto , Barreira Hematoencefálica/virologia , Estudos de Casos e Controles , Disfunção Cognitiva/complicações , Disfunção Cognitiva/virologia , Citocinas/sangue , Dinamarca , Fadiga/etiologia , Fadiga/virologia , Feminino , Hepatite C/complicações , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , RNA Viral/sangue
13.
Nat Biotechnol ; 33(5): 549-554, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25798937

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer. Cell entry of HCV and other pathogens is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model, we show that a monoclonal antibody specific for the TJ protein claudin-1 (ref. 7) eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection by means of host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Claudina-1/imunologia , Hepatite C/terapia , Cirrose Hepática/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Claudina-1/uso terapêutico , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Humanos , Cirrose Hepática/terapia , Cirrose Hepática/virologia , Camundongos
14.
J Gen Virol ; 96(Pt 6): 1380-1388, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25701818

RESUMO

Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV replication and contribute to the hepatic reservoir. We screened cholangiocytes along with a panel of cholangiocarcinoma-derived cell lines for their ability to support HCV entry and replication. While primary cholangiocytes were refractory to infection and lacked expression of several entry factors, two cholangiocarcinoma lines, CC-LP-1 and Sk-ChA-1, supported efficient HCV entry; furthermore, Sk-ChA-1 cells supported full virus replication. In vivo cholangiocarcinomas expressed all of the essential HCV entry factors; however, cholangiocytes adjacent to the tumour and in normal tissue showed a similar pattern of receptor expression to ex vivo isolated cholangiocytes, lacking SR-BI expression, explaining their inability to support infection. This study provides the first report that HCV can infect cholangiocarcinoma cells and suggests that these heterogeneous tumours may provide a reservoir for HCV replication in vivo.


Assuntos
Células Epiteliais/virologia , Hepacivirus/fisiologia , Tropismo Viral , Linhagem Celular Tumoral , Hepacivirus/crescimento & desenvolvimento , Humanos , Internalização do Vírus , Replicação Viral
15.
Hepatology ; 59(4): 1320-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24259385

RESUMO

UNLABELLED: Macrophages are critical components of the innate immune response in the liver. Chronic hepatitis C is associated with immune infiltration and the infected liver shows a significant increase in total macrophage numbers; however, their role in the viral life cycle is poorly understood. Activation of blood-derived and intrahepatic macrophages with a panel of Toll-like receptor agonists induce soluble mediators that promote hepatitis C virus (HCV) entry into polarized hepatoma cells. We identified tumor necrosis factor α (TNF-α) as the major cytokine involved in this process. Importantly, this effect was not limited to HCV; TNF-α increased the permissivity of hepatoma cells to infection by Lassa, measles and vesicular stomatitis pseudoviruses. TNF-α induced a relocalization of tight junction protein occludin and increased the lateral diffusion speed of HCV receptor tetraspanin CD81 in polarized HepG2 cells, providing a mechanism for their increased permissivity to support HCV entry. High concentrations of HCV particles could stimulate macrophages to express TNF-α, providing a direct mechanism for the virus to promote infection. CONCLUSION: This study shows a new role for TNF-α to increase virus entry and highlights the potential for HCV to exploit existing innate immune responses in the liver to promote de novo infection events.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Neoplasias Hepáticas/virologia , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Internalização do Vírus , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Células Hep G2 , Hepatite C/metabolismo , Hepatite C/fisiopatologia , Humanos , Imunidade Inata/fisiologia , Interleucina-1beta/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ocludina/metabolismo , Tetraspanina 28/metabolismo , Junções Íntimas/fisiologia
16.
J Hepatol ; 58(6): 1074-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23353869

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) poses a global health problem, with over 170 million chronically infected individuals at risk of developing progressive liver disease. The ability of a virus to spread within a host is a key determinant of its persistence and virulence. HCV can transmit in vitro by cell-free particle diffusion or via contact(s) between infected and naïve hepatocytes. However, limited information is available on the relative efficiency of these routes, our aim is to develop physiologically relevant assays to quantify these processes. METHODS: We developed a single-cycle infection assay to measure HCV transmission rates. RESULTS: We compared HCV spread in proliferating and arrested cell systems and demonstrated a significant reduction in cell-to-cell infection of arrested target cells. Comparison of cell-free and cell-to-cell virus spread demonstrated relatively poor transmission rates, with 10-50 infected producer cells required to infect a single naïve target cell. We found HCV strain J6/JFH to be 10-fold more efficient at spreading via the cell-to-cell route than cell-free, whereas SA13/JFH and HK6/JFH strains showed comparable rates of infection via both routes. Importantly, the level of infectious virus released from cells did not predict the ability of a virus to spread in vitro, highlighting the importance of studying cell-associated viruses. CONCLUSIONS: These studies demonstrate the relatively poor infectivity of HCV and highlight differences between strains in their efficiency and preferred route of transmission that may inform future therapeutic strategies that target virus entry.


Assuntos
Hepacivirus/fisiologia , Hepatócitos/virologia , Adesão Celular , Comunicação Celular , Linhagem Celular , Humanos , Receptores Depuradores Classe B/fisiologia
18.
Rev Med Virol ; 22(3): 182-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22392805

RESUMO

HCV is a blood-borne pathogen that affects approximately 3% of the global population and leads to progressive liver disease. Recent advances have identified an essential role for host cell molecules: tetraspanin CD81, scavenger receptor B1 and the tight junction proteins claudin-1 and occludin in HCV entry, suggesting a complex multi-step process. The conserved nature of this receptor-dependent step in the viral life cycle offers an attractive target for therapeutic intervention. Evidence is emerging that additional factors other than classical receptors, such as inflammatory mediators regulate the ability of hepatocytes to support HCV entry, and as such may provide potential avenues for drug design and development. In this review, we summarise the recent literature on HCV entry mechanisms with a view to realising the future potential of therapeutically targeting this process.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Hepacivirus/genética , Hepatite C/genética , Humanos , Receptores Virais/genética
19.
Gastroenterology ; 142(3): 634-643.e6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22138189

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic syndromes, including central nervous system (CNS) abnormalities. However, it is unclear whether such cognitive abnormalities are a function of systemic disease, impaired hepatic function, or virus infection of the CNS. METHODS: We measured levels of HCV RNA and expression of the viral entry receptor in brain tissue samples from 10 infected individuals (and 3 uninfected individuals, as controls) and human brain microvascular endothelial cells by using quantitative polymerase chain reaction and immunochemical and confocal imaging analyses. HCV pseudoparticles and cell culture-derived HCV were used to study the ability of endothelial cells to support viral entry and replication. RESULTS: Using quantitative polymerase chain reaction, we detected HCV RNA in brain tissue of infected individuals at significantly lower levels than in liver samples. Brain microvascular endothelia and brain endothelial cells expressed all of the recognized HCV entry receptors. Two independently derived brain endothelial cell lines, hCMEC/D3 and HBMEC, supported HCV entry and replication. These processes were inhibited by antibodies against the entry factors CD81, scavenger receptor BI, and claudin-1; by interferon; and by reagents that inhibit NS3 protease and NS5B polymerase. HCV infection promotes endothelial permeability and cellular apoptosis. CONCLUSIONS: Human brain endothelial cells express functional receptors that support HCV entry and replication. Virus infection of the CNS might lead to HCV-associated neuropathologies.


Assuntos
Barreira Hematoencefálica/virologia , Células Endoteliais/virologia , Hepacivirus/patogenicidade , Hepatite C/virologia , Microvasos/virologia , Adulto , Antivirais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Permeabilidade Capilar , Estudos de Casos e Controles , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Células HEK293 , Hepacivirus/genética , Hepatite C/complicações , Hepatite C/mortalidade , Humanos , Imuno-Histoquímica , Fígado/virologia , Masculino , Microscopia Confocal , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Pessoa de Meia-Idade , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Virais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Internalização do Vírus , Replicação Viral
20.
J Hepatol ; 56(4): 803-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22178269

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) causes progressive liver disease and is a major risk factor for the development of hepatocellular carcinoma (HCC). However, the role of infection in HCC pathogenesis is poorly understood. We investigated the effect(s) of HCV infection and viral glycoprotein expression on hepatoma biology to gain insights into the development of HCV associated HCC. METHODS: We assessed the effect(s) of HCV and viral glycoprotein expression on hepatoma polarity, migration and invasion. RESULTS: HCV glycoproteins perturb tight and adherens junction protein expression, and increase hepatoma migration and expression of epithelial to mesenchymal transition markers Snail and Twist via stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates many genes involved in tumor growth and metastasis, including vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-ß). Neutralization of both growth factors shows different roles for VEGF and TGFß in regulating hepatoma polarity and migration, respectively. Importantly, we confirmed these observations in virus infected hepatoma and primary human hepatocytes. Inhibition of HIF-1α reversed the effect(s) of infection and glycoprotein expression on hepatoma permeability and migration and significantly reduced HCV replication, demonstrating a dual role for HIF-1α in the cellular processes that are deregulated in many human cancers and in the viral life cycle. CONCLUSIONS: These data provide new insights into the cancer-promoting effects of HCV infection on HCC migration and offer new approaches for treatment.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Movimento Celular/fisiologia , Hepacivirus/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias Hepáticas/fisiopatologia , Replicação Viral/fisiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Progressão da Doença , Glicoproteínas/fisiologia , Hepatite C/patologia , Hepatite C/fisiopatologia , Humanos , Neoplasias Hepáticas/patologia , Junções Íntimas/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA