Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 20(5)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37879343

RESUMO

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two commonly used non-invasive techniques for measuring brain activity in neuroscience and brain-computer interfaces (BCI).Objective. In this review, we focus on the use of EEG and fMRI in neurofeedback (NF) and discuss the challenges of combining the two modalities to improve understanding of brain activity and achieve more effective clinical outcomes. Advanced technologies have been developed to simultaneously record EEG and fMRI signals to provide a better understanding of the relationship between the two modalities. However, the complexity of brain processes and the heterogeneous nature of EEG and fMRI present challenges in extracting useful information from the combined data.Approach. We will survey existing EEG-fMRI combinations and recent studies that exploit EEG-fMRI in NF, highlighting the experimental and technical challenges.Main results. We made a classification of the different combination of EEG-fMRI for NF, we provide a review of multimodal analysis methods for EEG-fMRI features. We also survey the current state of research on EEG-fMRI in the different existing NF paradigms. Finally, we also identify some of the remaining challenges in this field.Significance. By exploring EEG-fMRI combinations in NF, we are advancing our knowledge of brain function and its applications in clinical settings. As such, this review serves as a valuable resource for researchers, clinicians, and engineers working in the field of neural engineering and rehabilitation, highlighting the promising future of EEG-fMRI-based NF.


Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética/métodos , Eletroencefalografia/métodos , Encéfalo
2.
Neuroimage ; 280: 120353, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652114

RESUMO

The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) allows the complementary study of the brain's electrophysiology and hemodynamics with high temporal and spatial resolution. One application with great potential is neurofeedback training of targeted brain activity, based on the real-time analysis of the EEG and/or fMRI signals. This depends on the ability to reduce in real time the severe artifacts affecting the EEG signal acquired with fMRI, mainly the gradient and pulse artifacts. A few methods have been proposed for this purpose, but they are either slow, hardware-dependent, publicly unavailable, or proprietary software. Here, we present a fully open-source and publicly available tool for real-time EEG artifact reduction in simultaneous EEG-fMRI recordings that is fast and applicable to any hardware. Our tool is integrated in the Python toolbox NeuXus for real-time EEG processing and adapts to a real-time scenario well-established artifact average subtraction methods combined with a long short-term memory network for R peak detection. We benchmarked NeuXus on three different datasets, in terms of artifact power reduction and background signal preservation in resting state, alpha-band power reactivity to eyes closure, and event-related desynchronization during motor imagery. We showed that NeuXus performed at least as well as the only available real-time tool for conventional hardware setups (BrainVision's RecView) and a well-established offline tool (EEGLAB's FMRIB plugin). We also demonstrated NeuXus' real-time ability by reporting execution times under 250 ms. In conclusion, we present and validate the first fully open-source and hardware-independent solution for real-time artifact reduction in simultaneous EEG-fMRI studies.


Assuntos
Imageamento por Ressonância Magnética , Neurorretroalimentação , Humanos , Artefatos , Eletroencefalografia , Benchmarking
4.
J Neuroeng Rehabil ; 18(1): 156, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717672

RESUMO

BACKGROUND: Illusion of movement induced by tendon vibration is commonly used in rehabilitation and seems valuable for motor rehabilitation after stroke, by playing a role in cerebral plasticity. The aim was to study if congruent visual cues using Virtual Reality (VR) could enhance the illusion of movement induced by tendon vibration of the wrist among participants with stroke. METHODS: We included 20 chronic stroke participants. They experienced tendon vibration of their wrist (100 Hz, 30 times) inducing illusion of movement. Three VR visual conditions were added to the vibration: a congruent moving virtual hand (Moving condition); a static virtual hand (Static condition); or no virtual hand at all (Hidden condition). The participants evaluated for each visual condition the intensity of the illusory movement using a Likert scale, the sensation of wrist's movement using a degree scale and they answered a questionnaire about their preferred condition. RESULTS: The Moving condition was significantly superior to the Hidden condition and to the Static condition in terms of illusion of movement (p < 0.001) and the wrist's extension (p < 0.001). There was no significant difference between the Hidden and the Static condition for these 2 criteria. The Moving condition was considered the best one to increase the illusion of movement (in 70% of the participants). Two participants did not feel any illusion of movement. CONCLUSIONS: This study showed the interest of using congruent cues in VR in order to enhance the consistency of the illusion of movement induced by tendon vibration among participants after stroke, regardless of their clinical severity. By stimulating the brain motor areas, this visuo-proprioceptive feedback could be an interesting tool in motor rehabilitation. Record number in Clinical Trials: NCT04130711, registered on October 17th 2019 ( https://clinicaltrials.gov/ct2/show/NCT04130711?id=NCT04130711&draw=2&rank=1 ).


Assuntos
Ilusões , Acidente Vascular Cerebral , Retroalimentação Sensorial , Humanos , Movimento , Propriocepção , Acidente Vascular Cerebral/complicações , Tendões , Vibração
5.
J Neural Eng ; 18(5)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551403

RESUMO

Objective.In this study, we assessed the impact of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) neurofeedback (NF) on connectivity strength and direction in bilateral motor cortices in chronic stroke patients. Most of the studies using NF or brain computer interfaces for stroke rehabilitation have assessed treatment effects focusing on successful activation of targeted cortical regions. However, given the crucial role of brain network reorganization for stroke recovery, our broader aim was to assess connectivity changes after an NF training protocol targeting localized motor areas.Approach.We considered changes in fMRI connectivity after a multisession EEG-fMRI NF training targeting ipsilesional motor areas in nine stroke patients. We applied the dynamic causal modeling and parametric empirical Bayes frameworks for the estimation of effective connectivity changes. We considered a motor network including both ipsilesional and contralesional premotor, supplementary and primary motor areas.Main results.Our results indicate that NF upregulation of targeted areas (ipsilesional supplementary and primary motor areas) not only modulated activation patterns, but also had a more widespread impact on fMRI bilateral motor networks. In particular, inter-hemispheric connectivity between premotor and primary motor regions decreased, and ipsilesional self-inhibitory connections were reduced in strength, indicating an increase in activation during the NF motor task.Significance.To the best of our knowledge, this is the first work that investigates fMRI connectivity changes elicited by training of localized motor targets in stroke. Our results open new perspectives in the understanding of large-scale effects of NF training and the design of more effective NF strategies, based on the pathophysiology underlying stroke-induced deficits.


Assuntos
Córtex Motor , Neurorretroalimentação , Acidente Vascular Cerebral , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
6.
PLoS One ; 16(9): e0256723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473788

RESUMO

INTRODUCTION: Motor Imagery (MI) is a powerful tool to stimulate sensorimotor brain areas and is currently used in motor rehabilitation after a stroke. The aim of our study was to evaluate whether an illusion of movement induced by visuo-proprioceptive immersion (VPI) including tendon vibration (TV) and Virtual moving hand (VR) combined with MI tasks could be more efficient than VPI alone or MI alone on cortical excitability assessed using Electroencephalography (EEG). METHODS: We recorded EEG signals in 20 healthy participants in 3 different conditions: MI tasks involving their non-dominant wrist (MI condition); VPI condition; and VPI with MI tasks (combined condition). Each condition lasted 3 minutes, and was repeated 3 times in randomized order. Our main judgment criterion was the Event-Related De-synchronization (ERD) threshold in sensori-motor areas in each condition in the brain motor area. RESULTS: The combined condition induced a greater change in the ERD percentage than the MI condition alone, but no significant difference was found between the combined and the VPI condition (p = 0.07) and between the VPI and MI condition (p = 0.20). CONCLUSION: This study demonstrated the interest of using a visuo-proprioceptive immersion with MI rather than MI alone in order to increase excitability in motor areas of the brain. Further studies could test this hypothesis among patients with stroke to provide new perspectives for motor rehabilitation in this population.


Assuntos
Excitabilidade Cortical/fisiologia , Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Propriocepção/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Interfaces Cérebro-Computador , Eletroencefalografia , Feminino , Mãos/inervação , Mãos/fisiologia , Voluntários Saudáveis , Humanos , Imagens, Psicoterapia/métodos , Imaginação/fisiologia , Masculino , Pessoa de Meia-Idade , Córtex Sensório-Motor/diagnóstico por imagem , Articulação do Punho/inervação , Articulação do Punho/fisiologia
7.
Front Neurol ; 12: 644278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305777

RESUMO

The simultaneous acquisition of electroencephalographic (EEG) signals and functional magnetic resonance images (fMRI) aims to measure brain activity with good spatial and temporal resolution. This bimodal neuroimaging can bring complementary and very relevant information in many cases and in particular for epilepsy. Indeed, it has been shown that it can facilitate the localization of epileptic networks. Regarding the EEG, source localization requires the resolution of a complex inverse problem that depends on several parameters, one of the most important of which is the position of the EEG electrodes on the scalp. These positions are often roughly estimated using fiducial points. In simultaneous EEG-fMRI acquisitions, specific MRI sequences can provide valuable spatial information. In this work, we propose a new fully automatic method based on neural networks to segment an ultra-short echo-time MR volume in order to retrieve the coordinates and labels of the EEG electrodes. It consists of two steps: a segmentation of the images by a neural network, followed by the registration of an EEG template on the obtained detections. We trained the neural network using 37 MR volumes and then we tested our method on 23 new volumes. The results show an average detection accuracy of 99.7% with an average position error of 2.24 mm, as well as 100% accuracy in the labeling.

8.
Ann Phys Rehabil Med ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32535167

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

9.
PLoS One ; 15(11): e0242416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33216756

RESUMO

INTRODUCTION: Illusion of movement induced by tendon vibration is an effective approach for motor and sensory rehabilitation in case of neurological impairments. The aim of our study was to investigate which modality of visual feedback in Virtual Reality (VR) associated with tendon vibration of the wrist could induce the best illusion of movement. METHODS: We included 30 healthy participants in the experiment. Tendon vibration inducing illusion of movement (wrist extension, 100Hz) was applied on their wrist during 3 VR visual conditions (10 times each): a moving virtual hand corresponding to the movement that the participants could feel during the tendon vibration (Moving condition), a static virtual hand (Static condition), or no virtual hand at all (Hidden condition). After each trial, the participants had to quantify the intensity of the illusory movement on a Likert scale, the subjective degree of extension of their wrist and afterwards they answered a questionnaire. RESULTS: There was a significant difference between the 3 visual feedback conditions concerning the Likert scale ranking and the degree of wrist's extension (p<0.001). The Moving condition induced a higher intensity of illusion of movement and a higher sensation of wrist's extension than the Hidden condition (p<0.001 and p<0.001 respectively) than that of the Static condition (p<0.001 and p<0.001 respectively). The Hidden condition also induced a higher intensity of illusion of movement and a higher sensation of wrist's extension than the Static condition (p<0.01 and p<0.01 respectively). The preferred condition to facilitate movement's illusion was the Moving condition (63.3%). CONCLUSIONS: This study demonstrated the importance of carefully selecting a visual feedback to improve the illusion of movement induced by tendon vibration, and the increase of illusion by adding VR visual cues congruent to the illusion of movement. Further work will consist in testing the same hypothesis with stroke patients.


Assuntos
Retroalimentação Sensorial/fisiologia , Ilusões/fisiologia , Movimento/fisiologia , Tendões/fisiologia , Realidade Virtual , Adulto , Idoso , Idoso de 80 Anos ou mais , Sinais (Psicologia) , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral , Vibração , Adulto Jovem
10.
Front Neurosci ; 14: 528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655347

RESUMO

Neurofeedback (NF) and brain-computer interface (BCI) applications rely on the registration and real-time feedback of individual patterns of brain activity with the aim of achieving self-regulation of specific neural substrates or control of external devices. These approaches have historically employed visual stimuli. However, in some cases vision is unsuitable or inadequately engaging. Other sensory modalities, such as auditory or haptic feedback have been explored, and multisensory stimulation is expected to improve the quality of the interaction loop. Moreover, for motor imagery tasks, closing the sensorimotor loop through haptic feedback may be relevant for motor rehabilitation applications, as it can promote plasticity mechanisms. This survey reviews the various haptic technologies and describes their application to BCIs and NF. We identify major trends in the use of haptic interfaces for BCI and NF systems and discuss crucial aspects that could motivate further studies.

11.
Front Hum Neurosci ; 14: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132910

RESUMO

Traditional rehabilitation techniques present limitations and the majority of patients show poor 1-year post-stroke recovery. Thus, Neurofeedback (NF) or Brain-Computer-Interface applications for stroke rehabilitation purposes are gaining increased attention. Indeed, NF has the potential to enhance volitional control of targeted cortical areas and thus impact on motor function recovery. However, current implementations are limited by temporal, spatial or practical constraints of the specific imaging modality used. In this pilot work and for the first time in literature, we applied bimodal EEG-fMRI NF for upper limb stroke recovery on four stroke-patients with different stroke characteristics and motor impairment severity. We also propose a novel, multi-target training approach that guides the training towards the activation of the ipsilesional primary motor cortex. In addition to fMRI and EEG outcomes, we assess the integrity of the corticospinal tract (CST) with tractography. Preliminary results suggest the feasibility of our approach and show its potential to induce an augmented activation of ipsilesional motor areas, depending on the severity of the stroke deficit. Only the two patients with a preserved CST and subcortical lesions succeeded in upregulating the ipsilesional primary motor cortex and exhibited a functional improvement of upper limb motricity. These findings highlight the importance of taking into account the variability of the stroke patients' population and enabled to identify inclusion criteria for the design of future clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA