Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712683

RESUMO

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Assuntos
Folhas de Planta , Ciclo do Carbono , Carbono/metabolismo
2.
Heliyon ; 9(12): e22859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125429

RESUMO

Fractions of phosphorus (P) and its sorption characteristics are affected by different soil fertility (FM) technologies which ultimately affect crop growth and productivity. However, the response of P fractions and sorption characteristics to soil fertility technologies that integrate diverse amendments is still poorly understood in acidic Nitisols. A randomized complete block design was layout in an acidic Nitisol to determine fractions of P, its sorption characteristics and use efficiencies in acidic Nitisols under various FM technologies in field conditions. The use of minimum tillage + maize residue + inorganic fertilizer + goat manure (MTCrGF) had the highest impact on and significantly increased resin-Pi, NaHCO3-Pi, and maximum P sorption (Smax) by 182, 76, and 52 mg P kg-1. Moreover, NaOH-Pi and Smax concentrations were higher under conventional tillage + maize residue + inorganic fertilizer + goat manure (CTCrGF) by 216 mg P kg-1 and 49 mg P kg-1 than the control. MTCrGF and CTCrGF also had the lowest P bonding energy (0.04 L mg-1). CTCrGF had the highest P partial productivity factor (0.093 and 0.140 kg biomass kg-1 P) and P agronomic efficiency (0.080 and 0.073 kg biomass kg-1 P) during the two cropping seasons. The results demonstrate the positive influence of combining multiple P sources on soil P fractions, sorption characteristics, and use efficiencies. Notably, combining either conventional or minimum tillage with maize straw and applying integrated manure and inorganic fertilizer (MTCrGF or CTCrGF) can increase the labile P concentrations and reduce the potential depletion of the non-renewable rock phosphate and the use of inorganic phosphatic fertilizers for agricultural production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA