Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105029, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442236

RESUMO

Communication between neurons relies on neurotransmission that takes place at synapses. Excitatory synapses are located primarily on dendritic spines that possess diverse morphologies, ranging from elongated filopodia to mushroom-shaped spines. Failure in the proper development of dendritic spines has detrimental consequences on neuronal connectivity, but the molecular mechanism that controls the balance of filopodia and mushroom spines is not well understood. G3BP1 is the key RNA-binding protein that assembles the stress granules in non-neuronal cells to adjust protein synthesis upon exogenous stress. Emerging evidence suggests that the biological significance of G3BP1 extends beyond its role in stress response, especially in the nervous system. However, the mechanism underlying the regulation and function of G3BP1 in neurons remains elusive. Here we found that G3BP1 suppresses protein synthesis and binds to the translation initiation factor eIF4E via its NTF2-like domain. Notably, the over-production of filopodia caused by G3BP1 depletion can be alleviated by blocking the formation of the translation initiation complex. We further found that the interaction of G3BP1 with eIF4E is regulated by arginine methylation. Knockdown of the protein arginine methyltransferase PRMT8 leads to elevated protein synthesis and filopodia production, which is reversed by the expression of methylation-mimetic G3BP1. Our study, therefore, reveals arginine methylation as a key regulatory mechanism of G3BP1 during dendritic spine morphogenesis and identifies eIF4E as a novel downstream target of G3BP1 in neuronal development independent of stress response.


Assuntos
DNA Helicases , Espinhas Dendríticas , Fator de Iniciação 4E em Eucariotos , Neurônios , Arginina/metabolismo , Proteínas de Transporte/metabolismo , Espinhas Dendríticas/metabolismo , DNA Helicases/metabolismo , Hipocampo/metabolismo , Metilação , Neurônios/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Ratos , Fator de Iniciação 4E em Eucariotos/metabolismo
2.
Brain Res Bull ; 188: 92-107, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853529

RESUMO

The 'neurogenesis hypothesis of depression' emphasizes the importance of upregulated hippocampal neurogenesis for the efficacy of antidepressant treatment. Neuromodulation is a promising therapeutic method that stimulates neural circuitries to treat neuropsychiatric illnesses. We conducted a scoping review on the neurogenic and antidepressant outcomes of neuromodulation in animal models of depression. PubMed, Web of Science, and PsycInfo were comprehensively searched for full-text English articles from inception to October 5, 2021. Data screening and extraction were conducted independently by two researchers. Seventeen eligible studies were included in this review. The majority of studies used non-invasive neuromodulation (n = 14) and assessed neurogenesis using neural proliferation (n = 16) and differentiation markers (n = 9). Limited reports (n = 2) used neurogenic inhibitors to evaluate the role of neurogenesis on the depressive-like behavioral outcomes. Overall, neuromodulation substantially effectuated both hippocampal cell proliferation and antidepressant-like behavior in animal models of depression, with some providing evidence for enhanced neuronal differentiation and maturation. The proposed neurogenic-related mechanisms mediating the neuromodulation efficacies included neurotrophic processes, anti-apoptotic pathways, and normalization of HPA axis functions. Further research is warranted to explore the role of neuromodulation-induced neurogenic effects on treatment efficacies and to elucidate the underlying molecular mechanisms.


Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Hipocampo/metabolismo , Neurogênese/fisiologia , Sistema Hipófise-Suprarrenal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA