Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(15): 3135-3145, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33830770

RESUMO

We present a study of the structural evolution of tantalum cluster anions Tan-, 6 ≤ n ≤ 13 using a combination of trapped ion electron diffraction (TIED) experiments with a variety of electronic structure methods. A genetic algorithm has been employed to establish a set of likely structures for each cluster, their geometries and energetics have been studied by density functional theory (DFT), random phase approximation, and two-component (2C) DFT methods, which include spin-orbit coupling. We find octahedral structures for Ta6- and Ta8- as well as structures based on the pentagonal bipyramid (Ta7- and Ta9-). Ta10--Ta12- are defective icosahedral structures and Ta13- is a distorted icosahedron. For most clusters, we find a good agreement between the theoretically predicted ground-state structures, especially those determined by the 2C method and the TIED results.

2.
Phys Chem Chem Phys ; 18(8): 6103-12, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26846699

RESUMO

AlOH has been detected in the circumstellar envelope of an oxygen-rich supergiant star (VY CMa) and is an abundant Al-containing system. Water molecules have also been detected, even in a vibrationally excited state. The coalescence of AlOH units and other processes involving AlOH could be the source of alumina-type particles. The results indicate that the formation of (AlOH)2 dimers is barrier-free but (HAlO)2 systems are far more stable. The (AlOH)2 → (HAlO)2 transformation is hindered by substantial energy barriers but is probably moderately fast at very high temperatures. Water catalysis by relay (or Grotthuss-like) mechanisms substantially reduces those barriers to the point that, in the (AlOH)2·(H2O)2 system, the critical transition states lie clearly below 2AlOH + 2H2O. A surface or nucleation environment may favor the (AlOH)2 → (HAlO)2 conversion as to be kinetically competitive with water elimination ((AlOH)2·(H2O)n → (AlOH)2 + nH2O) in the hydrated systems. The hydrated (HAlO)2 structures can easily produce very stable hydrogenated Al2O3 and Al2O4 frames, which, to the same extent, can eliminate molecular hydrogen by exothermic processes. The remaining hydrogen atoms are exterior to the frames and perhaps could be removed by reaction with atomic hydrogen. The possible role of the coalescence of the undetected HAl(OH)2 and Al(OH)2 or AlO2H molecules is discussed. Al(OH)2 can easily be formed by reaction of AlO with a water molecule in exothermic barrier-free processes.

3.
J Phys Chem A ; 118(1): 78-82, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24328230

RESUMO

Quantum mechanical tunneling of atoms plays a significant role in many chemical reactions. The crossover temperature between classical and quantum movement is a convenient preliminary indication of the importance of tunneling for a particular reaction. Here we show, using instanton theory, that quantum tunneling is possible significantly above this crossover temperature for specific forms of the potential energy surface. We demonstrate the effect on an analytic potential as well as a chemical system. While protons move asynchronously along a Grotthuss chain in the classical high-temperature range, the onset of tunneling results in a synchronization of their movement.


Assuntos
Temperatura , Prótons , Teoria Quântica , Propriedades de Superfície
4.
J Comput Chem ; 34(23): 2020-31, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23801503

RESUMO

We have performed high-level electronic structure computations on the most important species of the CH(n)P systems n = 1-3 to characterize them and provide reliable information about the equilibrium and vibrationally averaged molecular structures, rotational constants, vibrational frequencies (harmonic and anharmonic), formation enthalpies, and vertical excitation energies. Those chemical systems are intermediates for several important reactions and also prototypical phosphorus-carbon compounds; however, they are often elusive to experimental detection. The present results significantly complement their knowledge and can be used as an assessment of the experimental information when available. The explicitly correlated coupled-cluster RCCSD(T)-F12 method has been used for geometry optimizations and vibrational frequency calculations. Vibrational configuration interaction theory has been used to account for anharmonicity effects. Basis-set limit extrapolations have been carried out to determine accurate thermochemical quantities. Electronic excited states have been calculated with coupled-cluster approaches and also by means of the multireference configuration interaction method.


Assuntos
Compostos Organofosforados/química , Modelos Moleculares , Teoria Quântica , Termodinâmica
5.
J Phys Chem A ; 117(1): 67-74, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23241001

RESUMO

We performed surface hopping simulations of Al + H(2)O collisions by a direct semiempirical method, reproducing the conditions of previous beam-gas experiments. We observed the formation of the HAlOH species, that dissociates to AlOH + H after a lifetime of about 0.6 ps. This species undergoes nonadiabatic transitions to its first excited state and is responsible for chemiluminescence in the visible range, while the Al-H(2)O complex emits in the infrared. The computed emission band in the visible is red-shifted with respect to the experimental one, because of slight inaccuracies of the potential energy surfaces. However, collisions with more water molecules and exciplex formation with excited Al((2)S, (4)P) atoms may also contribute to the short wavelength emission, as we show by accurate ab initio calculations.

6.
J Phys Chem A ; 116(30): 8040-50, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22770437

RESUMO

The first step of the reaction of two relatively large Alm clusters (m = 17, 28) with a few water molecules has been studied by electronic structure methods. The complexes Alm·(H2O)n (n = 1-2) have been characterized, and the saddle points corresponding to the first step in the reaction, namely, formation of HAlmOH·(H2O)n-1 systems, have been located. The Al28 cluster is special in the sense it has two electronic states, singlet and triplet, which are very close in energy and also have quite similar equilibrium structures. The preferred adsorption and reaction sites have been determined. We find quite clear preferences toward some sites, the effect of cluster distortion being moderately significant in the stability of the complexes. The interaction with water does not appear, in general, to bring the triplet state of the Al28·(H2O)2 adducts below the singlet; not even the corresponding saddle points appear to be lower in energy. The rate coefficients, tunneling transmission factors, and activation free energies have been computed and compared with those of the Al13 and Al3 clusters, even with those of the Al atom. It turns out the rates are quite close to those of Al3 and much larger than those of Al and Al13. There is no dramatic difference between the reactivity of the singlet and triplet state of Al28; however, there are very significant differences between different sites. Finally, we studied the interaction between the lowest-lying singlet and triplet states of Al28 through multireference configuration interaction (MRCI) spin-orbit computations. The vertical excitation energies corresponding to a number of low-lying singlet and triplet states are also determined by MRCI computations. It turns out that the spin-orbit interaction is very weak, which suggests that both states, the lowest-lying singlet and triplet, could evolve somehow independently, at least when interacting with closed-shell molecules. It is suggested that the situation could be quite different in a reaction with molecular radicals or if external fields are applied.

7.
J Chem Phys ; 128(14): 144310, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18412448

RESUMO

The electronic excited states of the [COH2]+ system have been studied in order to establish their role in the dynamics of the C+ + H2O-->[COH]+ +H reaction, which is a prototypical ion-molecule reaction. The most relevant minima and saddle points of the lowest excited state have been determined and energy profiles for the lowest excited doublet and quartet electronic states have been computed along the fragmentation and isomerization coordinates. Also, nonadiabatic coupling strengths between the ground and the first excited state have been computed where they can be large. Our analysis suggests that the first excited state could play an important role in the generation of the formyl isomer, which has been detected in crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], but could not be explained in quasiclassical trajectory computations [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003); J. R. Flores, J. Chem. Phys. 125, 164309 (2006)].

8.
J Phys Chem A ; 111(43): 10899-906, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17929789

RESUMO

A dynamical study of the Si(+) + H(2)O reaction has been carried out by means of a quasiclassical trajectory method that decomposes the reaction into a capture step, for which an accurate analytical potential is employed, and an unimolecular step, in which the evolution of the collision complex is studied through a direct dynamics BHandHLYP/6-31G(d,p) method. The capture rate coefficient has been computed for thermal conditions corresponding to temperatures ranging from 50 to 1000 K. It is concluded that the main reason why the reaction rate is about 10 times smaller than the capture rate (at T = 298 K) is the topology of the potential energy surface of the ground state. It is also concluded that the ratio between the rates of product and reactant generation from the collision complex decreases quite steeply with increasing temperature, and therefore, the reaction rate decreases even more sharply. Exciting the stretching normal modes of water substantially increases that ratio, and moderate rotational excitation does not appear to have a relevant effect. The collision complex is always initially SiOH(2)(+), but in some trajectories, it becomes HSiOH(+), which generates the products, although the former species is the main intermediate.

9.
J Chem Phys ; 125(16): 164309, 2006 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17092075

RESUMO

A new method for the representation of potential energy surfaces (PESs) based on the p version of the finite element method is presented and applied to the PES of the [COH2]+ system in order to study the C++H2O-->[COH]++H reaction through the quasiclassical trajectory method. Benchmark ab initio computations have been performed on the most relevant stationary points of the PES through a procedure that incorporates basis set extrapolations, the contribution of the core correlation energy, and scalar relativistic corrections. The electronic structure method employed to compute the many points needed to construct the PES is a hybrid density functional approach of the B3LYP type with geometry-dependent parameters, which improves dramatically the performance with respect of the B3LYP method. The trajectory computations shed light on the behavior of the COH2+ complex formed in the collision. At a fixed relative translational energy of 0.62 eV, which corresponds to the crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], the complex dissociates significantly into the reactants (37%). However, the behavior for a thermal sampling at T=300 K is significantly different because only 9% of the trajectories where capture occurs lead to dissociation into the reactants. The latter kind of behavior is coherent with the view that simple ion-molecule reactions proceed quite often at the capture rate provided it is corrected by the fraction of the electronic states which, being nearly degenerate for the reactants, become attractive at short distances. For both T=300 K and crossed beam conditions, the trajectory computations indicate that COH2+ is the critical intermediate, in agreement with a recent work [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003)] and in contrast with the interpretation of the crossed beam experiments. Besides, virtually all trajectories generate COH++H (>99%), but a significant proportion of the isoformyl cation is formed with enough vibrational energy as to surmount the COH+-HCO+ isomerization barrier, about 37% at T=300 K.

10.
J Chem Phys ; 123(14): 144316, 2005 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-16238400

RESUMO

We compute the adiabatic transition energies of methylene (CH(2)) from the ground state to the lowest electronically excited valence states using the r(12)-MR-ACPF-2 method with a large basis set and an extended reference space. We recall that this method aims at reaching the basis-set and full configuration interaction (CI) limits simultaneously. Our best excitation energies, T(e) (T(0)), are 9.22 (8.87) (a (1)A(1), corrected for relativistic and adiabatic effects), 31.98 (31.86) (b (1)B(1)), and 57.62 (57.18) kcal mol(-1) (c (1)A(1)) (both uncorrected). We are able to reach the respective basis-set limits that closely that the remaining errors of our (uncorrected) calculations are clearly due to the MR-ACPF-2 method. While we are unable to assess the error of the latter method in a systematic way, we still believe that it is rather unlikely that the errors of our excitation energies exceed +/-0.10 kcal mol(-1). We finally observe that our (corrected) a state values deviate by only -0.10 (-0.10) kcal mol(-1) from the results of Csaszar et al. [J. Chem. Phys. 118, 10631 (2003)]--who did careful extrapolations to the valence full-CI and basis-set limits and added a correction for the core correlation--and that the deviation from experiment is only -0.13 (-0.13) kcal mol(-1). From these excellent agreements we conclude that our excitation energies to the b and c states are similarly accurate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA