Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Aging Pathobiol Ther ; 2(1): 20-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35356005

RESUMO

Objective: In this study, the effects of overexpression of thioredoxin 2 (Trx2) on aging and age-related diseases were examined using Trx2 transgenic mice [Tg(TXN2]+/0]. Because our previous studies demonstrated that thioredoxin (Trx) overexpression in the cytosol (Trx1) did not extend maximum lifespan, this study was conducted to test if increased Trx2 expression in mitochondria shows beneficial effects on aging and age-related pathology. Methods: Trx2 transgenic mice were generated using a fragment of the human genome containing the TXN2 gene. Effects of Trx2 overexpression on survival, age-related pathology, oxidative stress, and redox-sensitive signaling pathways were examined in male Tg(TXN2)+/0 mice. Results: Trx2 levels were significantly higher (approximately 1.6- to 5-fold) in all of the tissues we examined in Tg(TXN2)+/0 mice compared to wild-type (WT) littermates, and the expression levels were maintained during aging (up to 22-24 months old). Trx2 overexpression did not alter the levels of Trx1, glutaredoxin, glutathione, or other major antioxidant enzymes. Overexpression of Trx2 was associated with reduced reactive oxygen species (ROS) production from mitochondria and lower isoprostane levels compared to WT mice. When we conducted the survival study, male Tg(TXN2)+/0 mice showed a slight extension (approximately 8-9%] of mean, median, and 10th percentile lifespans; however, the survival curve was not significantly different from WT mice. Cross-sectional pathological analysis (22-24 months old) showed that Tg(TXN2)+/0 mice had a slightly higher severity of lymphoma; however, tumor burden, disease burden, and severity of glomerulonephritis and inflammation were similar to WT mice. Trx2 overexpression was also associated with higher c-Jun and c-Fos levels; however, mTOR activity and levels of NFκB p65 and p50 were similar to WT littermates. Conclusions: Our findings suggest that the increased levels of Trx2 in mitochondria over the lifespan in Tg(TXN2)+/0 mice showed a slight life-extending effect, reduced ROS production from mitochondria and oxidative damage to lipids, but showed no significant effects on aging and age-related diseases.

2.
Aging Pathobiol Ther ; 2(3): 126-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35493763

RESUMO

Our laboratory has conducted the first systematic survival studies to examine the biological effects of the antioxidant protein thioredoxin (Trx) on aging and age-related pathology. Our studies with C57BL/6 mice overexpressing Trx1 [Tg(act-TRX1)+/0 and Tg(TXN)+/0) demonstrated a slight extension in early lifespan compared to wild-type (WT) mice; however, no significant effects were observed in the later part of life. Overexpression of Trx2 in male C57BL/6 mice [Tg(TXN2)+/0] demonstrated a slightly extended lifespan compared to WT mice. The pathology results from two lines of Trx1 transgenic mice showed a slightly higher incidence of age-related neoplastic diseases compared to WT mice, and a slight increase in the severity of lymphoma, a major neoplastic disease, was observed in Trx2 transgenic mice. Together these studies indicate that Trx overexpression in one compartment of the cell (cytosol or mitochondria alone) has marginal beneficial effects on lifespan. On the other hand, down-regulation of Trx in either the cytosol (Trx1KO) or mitochondria (Trx2KO) showed no significant changes in lifespan compared to WT mice, despite several changes in pathophysiology of these knockout mice. When we examined the synergetic effects of overexpressing Trx1 and Trx2, TXNTg x TXN2Tg mice showed a significantly shorter lifespan with accelerated cancer development compared to WT mice. These results suggest that synergetic effects of Trx overexpression in both the cytosol and mitochondria on aging are deleterious and the development of age-related cancer is accelerated. On the other hand, we have recently found that down-regulation of Trx in both the cytosol and mitochondria in Trx1KO x Trx2KO mice has beneficial effects on aging. The results generated from our lab along with our ongoing study using Trx1KO x Trx2KO mice could elucidate the key pathways (i.e., apoptosis and autophagy) that prevent accumulation of damaged cells and genomic instability leading to reduced cancer formation.

3.
Pathobiol Aging Age Relat Dis ; 8(1): 1533754, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30370017

RESUMO

We examined the effects of continuous overexpression of thioredoxin (Trx) 1 on aging in Trx1 transgenic mice [Tg(TXN)+/0]. This study was conducted to test whether increased thioredoxin expression over the lifespan in mice would alter aging and age-related pathology because our previous study demonstrated that Tg(act-TXN)+/0 mice had no significant maximum life extension, possibly due to the use of actin as a promoter, which may have resulted in loss of Trx1 overexpression during aging. To test this hypothesis, we generated new Trx1 transgenic mice using a fragment of the human genome containing the TXN gene with an endogenous promoter to ensure continuous overexpression of Trx1 throughout the lifespan. Universal overexpression of Trx1 was observed, and Trx1 overexpression was maintained during aging (up to 22-24 months old) in the Tg(TXN)+/0 mice. The levels of Trx1 are significantly higher (approximately 4 to 31 fold) in all of the tissues examined in the Tg(TXN)+/0 mice compared to the wild-type (WT) littermates. The overexpression of Trx1 did not cause any changes in the levels of Trx2, glutaredoxin, glutathione, or other major antioxidant enzymes. The survival study demonstrated that male Tg(TXN)+/0 mice slightly extended the earlier part of the lifespan compared to WT littermates, but no significant life extension was observed over the lifespan. The cross-sectional pathological analysis (22-25 months old) showed that Tg(TXN)+/0 mice had a significantly higher severity of lymphoma and more tumor burden than WT mice, which was associated with the suppression of the apoptosis signal-regulating kinase 1 (ASK1) pathway. Our findings suggest that the increased levels of Trx1 over the lifespan in Tg(TXN)+/0 mice showed some beneficial effects (slight extension of lifespan) in the earlier part of life but had no significant effects on median or maximum lifespans, and increased Trx1 levels enhanced tumor development in old mice.

4.
Geroscience ; 40(5-6): 453-468, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30121784

RESUMO

To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.


Assuntos
Envelhecimento/fisiologia , Citosol/metabolismo , Longevidade/fisiologia , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
5.
Arch Biochem Biophys ; 576: 32-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25726727

RESUMO

In spite of intensive study, there is still controversy about the free radical or oxidative stress theory of aging, particularly in mammals. Our laboratory has conducted the first detailed studies on the role of thioredoxin (Trx) in the cytosol (Trx1) and in mitochondria (Trx2) on oxidative stress and aging using unique mouse models either overexpressing or down-regulating Trx1 or Trx2. The results generated from our lab and others indicate that: (1) oxidative stress and subsequent changes in signaling pathways could have different pathophysiological impacts at different stages of life; (2) changes in redox-sensitive signaling controlled by levels of oxidative stress and redox state could play more important roles in pathophysiology than accumulation of oxidative damage; (3) changes in oxidative stress and redox state in different cellular compartments (cytosol, mitochondria, or nucleus) could play different roles in pathophysiology during aging, and their combined effects show more impact on aging than changes in either oxidative stress or redox state alone; and (4) the roles of oxidative stress and redox state could have different pathophysiological consequences in different organs/tissues/cells or pathophysiological conditions. To critically test the role of oxidative stress on aging and investigate changes in redox-sensitive signaling pathways, further study is required.


Assuntos
Envelhecimento , Estresse Oxidativo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Animais , Regulação para Baixo , Humanos , Longevidade , Tiorredoxinas/análise , Regulação para Cima
6.
Artigo em Inglês | MEDLINE | ID: mdl-23799173

RESUMO

Since 1996, aging studies using several strains of long-lived mutant mice have been conducted. Among these studies, Ames dwarf mice have been extensively examined to seek clues regarding the role of the growth hormone/insulin-like growth factor-1 axis in the aging process. Interestingly, these projects demonstrate that Ames dwarf mice have physiological characteristics that are similar to those seen with calorie restriction, which has been the most effective experimental manipulation capable of extending lifespan in various species. However, this introduces the question of whether Ames dwarf and calorie-restricted (CR) mice have an extended lifespan through common or independent pathways. To answer this question, we compared the disease profiles of Ames dwarf mice to their normal siblings fed either ad libitum (AL) or a CR diet. Our findings show that the changes in age-related diseases between AL-fed Ames dwarf mice and CR wild-type siblings were similar but not identical. Moreover, the effects of CR on age-related pathology showed similarities and differences between Ames dwarf mice and their normal siblings, indicating that calorie restriction and Ames dwarf mice exhibit their anti-aging effects through both independent and common mechanisms.

7.
Artigo em Inglês | MEDLINE | ID: mdl-22953037

RESUMO

Aging is associated with reduced ability to maintain normal glucose homeostasis. It has been suggested that an age-associated increase in chronic pro-inflammatory state could drive this reduction in glucoregulatory function. Thioredoxins (Trx) are oxido-reductase enzymes that play an important role in the regulation of oxidative stress and inflammation. In this study, we tested whether overexpression of Trx1 in mice [Tg(TRX1)(+/0)] could protect from glucose metabolism dysfunction caused by high fat diet feeding. Body weight and fat mass gains with high fat feeding were similar in Tg(TRX1)(+/0) and wild-type mice; however, high fat diet induced glucose intolerance was reduced in Tg(TRX1)(+/0) mice relative to wild-type mice. In addition, expression of the pro-inflammatory cytokine TNF-α was reduced in adipose tissue of Tg(TRX1)(+/0) mice compared to wild-type mice. These findings suggest that activation of thioredoxins may be a potential therapeutic target for maintenance of glucose metabolism with obesity or aging.

8.
Longev Healthspan ; 1: 4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24764510

RESUMO

The Free Radical or Oxidative Stress Theory of Aging is one of the most popular theories in aging research and has been extensively studied over the past several decades. However, recent evidence using transgenic/knockout mice that overexpress or down-regulate antioxidant enzymes challenge the veracity of this theory since the animals show no increase or decrease in lifespan. These results seriously call into question the role of oxidative damage/stress in the aging process in mammals. Therefore, the theory requires significant modifications if we are to understand the relationship between aging and the regulation of oxidative stress. Our laboratory has been examining the impacts of thioredoxins (Trxs), in the cytosol and mitochondria, on aging and age-related diseases. Our data from mice that are either up-regulating or down-regulating Trx in different cellular compartments, that is, the cytosol or mitochondria, could shed some light on the role of oxidative stress and its pathophysiological effects. The results generated from our lab and others may indicate that: 1) changes in oxidative stress and the redox state in the cytosol, mitochondria or nucleus might play different roles in the aging process; 2) the role of oxidative stress and redox state could have different pathophysiological consequences in different tissues/cells, for example, mitotic vs. post-mitotic; 3) oxidative stress could have different pathophysiological impacts in young and old animals; and 4) the pathophysiological roles of oxidative stress and redox state could be controlled through changes in redox-sensitive signaling, which could have more diverse effects on pathophysiology than the accumulation of oxidative damage to various molecules. To critically test the role of oxidative stress on aging and age-related diseases, further study is required using animal models that regulate oxidative stress levels differently in each cellular compartment, each tissue/organ, and/or at different stages of life (young, middle and old) to change redox sensitive signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA