Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7689, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169815

RESUMO

22q11.2 deletion syndrome, associated with congenital and neuropsychiatric anomalies, is the most common copy number variant (CNV)-associated syndrome. Patient-derived, induced pluripotent stem cell (iPS) models have provided insight into this condition. However, patient-derived iPS cells may harbor underlying genetic heterogeneity that can confound analysis. Furthermore, almost all available models reflect the commonly-found ~ 3 Mb "A-D" deletion at this locus. The ~ 1.5 Mb "A-B" deletion, a variant of the 22q11.2 deletion which may lead to different syndromic features, and is much more frequently inherited than the A-D deletion, remains under-studied due to lack of relevant models. Here we leveraged a CRISPR-based strategy to engineer isogenic iPS models of the 22q11.2 "A-B" deletion. Differentiation to excitatory neurons with subsequent characterization by transcriptomics and cell surface proteomics identified deletion-associated alterations in proliferation and adhesion. To illustrate in vivo applications of this model, we further implanted neuronal progenitor cells into the cortex of neonatal mice and found potential alterations in neuronal maturation. The isogenic models generated here will provide a unique resource to study this less-common variant of the 22q11.2 microdeletion syndrome.


Assuntos
Síndrome de DiGeorge , Animais , Camundongos , Humanos , Síndrome de DiGeorge/genética , Estruturas Cromossômicas , Heterogeneidade Genética , Neurônios , Deleção Cromossômica , Cromossomos Humanos Par 22/genética
2.
Science ; 375(6579): eabk2346, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084970

RESUMO

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Assuntos
Interneurônios/fisiologia , Eminência Mediana/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese , Prosencéfalo/citologia , Animais , Animais Recém-Nascidos , Movimento Celular , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Interneurônios/citologia , Eminência Mediana/citologia , Eminência Mediana/crescimento & desenvolvimento , Camundongos , Células-Tronco Neurais/transplante , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Transplante Heterólogo
3.
J Neurosci ; 39(38): 7529-7538, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31391263

RESUMO

Transplantation of even a small number of embryonic inhibitory neurons from the medial ganglionic eminence (MGE) into postnatal visual cortex makes it lose responsiveness to an eye deprived of vision when the transplanted neurons reach the age of the normal critical period of activity-dependent ocular dominance (OD) plasticity. The transplant might induce OD plasticity in the host circuitry or might instead construct a parallel circuit of its own to suppress cortical responses to the deprived eye. We transplanted MGE neurons expressing either archaerhodopsin or channelrhodopsin into the visual cortex of both male and female mice, closed one eyelid for 4-5 d, and, as expected, observed transplant-induced OD plasticity. This plasticity was evident even when the activity of the transplanted cells was suppressed or enhanced optogenetically, demonstrating that the plasticity was produced by changes in the host visual cortex.SIGNIFICANCE STATEMENT Interneuron transplantation into mouse V1 creates a window of heightened plasticity that is quantitatively and qualitatively similar to the normal critical period; that is, short-term occlusion of either eye markedly changes ocular dominance (OD). The underlying mechanism of this process is not known. Transplanted interneurons might either form a separate circuit to maintain the OD shift or might instead trigger changes in the host circuity. We designed experiments to distinguish the two hypotheses. Our findings suggest that while inhibition produced by the transplanted cells triggers this form of plasticity, the host circuity is entirely responsible for maintaining the OD shift.


Assuntos
Dominância Ocular/fisiologia , Interneurônios/transplante , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA