Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1209588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346037

RESUMO

In cancer, activation of the IRE1/XBP1s axis of the unfolded protein response (UPR) promotes immunosuppression and tumor growth, by acting in cancer cells and tumor infiltrating immune cells. However, the role of IRE1/XBP1s in dendritic cells (DCs) in tumors, particularly in conventional type 1 DCs (cDC1s) which are cellular targets in immunotherapy, has not been fully elucidated. Here, we studied the role of IRE1/XBP1s in subcutaneous B16/B78 melanoma and MC38 tumors by generating loss-of-function models of IRE1 and/or XBP1s in DCs or in cDC1s. Data show that concomitant deletion of the RNase domain of IRE1 and XBP1s in DCs and cDC1s does not influence the kinetics of B16/B78 and MC38 tumor growth or the effector profile of tumor infiltrating T cells. A modest effect is observed in mice bearing single deletion of XBP1s in DCs, which showed slight acceleration of melanoma tumor growth and dysfunctional T cell responses, however, this effect was not recapitulated in animals lacking XBP1 only in cDC1s. Thus, evidence presented here argues against a general pro-tumorigenic role of the IRE1/XBP1s pathway in tumor associated DC subsets.


Assuntos
Melanoma Experimental , Ribonucleases , Camundongos , Animais , Ribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Imunidade Adaptativa , Ribonuclease Pancreático/metabolismo , Melanoma Experimental/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células Dendríticas
2.
Front Cell Dev Biol ; 11: 1089728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025177

RESUMO

The initiation of adaptive immunity relies on the performance of dendritic cells (DCs), which are specialized leukocytes with professional antigen presenting capabilities. As such, the molecular mechanisms safeguarding DC homeostasis are matter of intense research. Sensors of the unfolded protein response (UPR) of the endoplasmic reticulum, a three-pronged signaling pathway that maintains the fidelity of the cellular proteome, have emerged as regulators of DC biology. The archetypical example is the IRE1/XBP1s axis, which supports DC development and survival of the conventional type 1 DC (cDC1) subtype. However, the role of additional UPR sensors in DC biology, such as the ATF6α branch, has not been clearly elucidated. Even though Xbp1 is transcriptionally induced by ATF6α under ER stress, it is unclear if cDCs also co-opt the ATF6α branch in tissues. Here, we examine the role of ATF6α in cDC homeostasis in vivo and upon innate stimulation in vitro. In steady state, animals lacking ATF6α in CD11c+ cells (Itgax Cre x Atf6 fl/fl mice) display normal cDC frequencies in spleen, intestine, liver, and lung. Also, ATF6α deficient cDCs express normal levels of Xbp1 mRNA and additional UPR components. However, a reduction of lung monocytes is observed in Itgax Cre x Atf6 fl/fl conditional deficient animals suggesting that ATF6α may play a role in the biology of monocyte subsets. Notably, in settings of DC activation, ATF6α contributes to the production of IL-12 and IL-6 to inflammatory stimuli. Thus, although ATF6α may be dispensable for tissue cDC homeostasis in steady state, the transcription factor plays a role in the acquisition of selective immunogenic features by activated DCs.

3.
Mol Biol Rep ; 49(6): 4193-4204, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35211864

RESUMO

BACKGROUND: Several studies have demonstrated the contribution of innate immune cells, including macrophages, in promoting systemic lupus erythematosus (SLE). Macrophages, one of the most abundant cell populations in the peritoneal cavity, are considered multifunctional cells with phenotypic plasticity. However, the functional properties of peritoneal macrophages in steady-state and during the progression of SLE remain poorly defined. METHODS AND RESULTS: Using the [NZB × NZW]F1 (BWF1) murine model of SLE, we analyzed the phenotype and function of peritoneal macrophages during the disease's onset. We found a higher frequency of peritoneal macrophages and B1a cells in BWF1-diseased mice than age-matched controls. Additionally, macrophages from diseased animals expressed lower levels of CD206, MHC-II, and Sirpα. RNAseq analysis identified 286 differentially expressed genes in peritoneal macrophages from diseased-BWF1 mice compared to control mice. Functional experiments demonstrate that peritoneal macrophages from diseased-BWF1 mice secrete higher levels of pro-inflammatory cytokines when activated with TLR7 and TLR9 agonists, and they were less efficient in suppressing the activation and proliferation of peritoneal LPS-activated B cells. These data demonstrate that peritoneal macrophages from BWF1-diseased mice present phenotypic and functional alterations shifting to a more pro-inflammatory state. CONCLUSIONS: The increase of macrophages with an altered phenotype and function together with the accumulation of B1a cells in the peritoneal cavity of diseased-BWF1 mice may promote the progression of the disease. Advancing awareness of the role and phenotype of peritoneal macrophages in SLE may contribute to a better understanding of these types of diseases and the development of novel therapies.


Assuntos
Lúpus Eritematoso Sistêmico , Macrófagos Peritoneais , Animais , Linfócitos B , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos NZB , Fenótipo
4.
Front Immunol ; 11: 696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411134

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Lúpus Eritematoso Sistêmico/imunologia , Células T Auxiliares Foliculares/imunologia , Timo/imunologia , Animais , Autoanticorpos/imunologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , DNA/imunologia , Modelos Animais de Doenças , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NZB , Plasmócitos/imunologia
5.
Cells ; 8(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817075

RESUMO

The unfolded protein response (UPR) is an adaptive response that maintains the fidelity of the cellular proteome in conditions that subvert the folding capacity of the cell, such as those noticed in infection and inflammatory contexts. In immunity, the UPR sensor IRE1 (Inositol-requiring enzyme 1-alpha) has emerged as a critical regulator of the homeostasis of antigen presenting cells (APCs). In the past few years, it has become clear that IRE1 plays canonical and non-canonical roles in APCs, many of which intersect with key features of these cells, including the initiation of inflammation, antibody production, and antigen presentation. The aims of the present review are to provide recent insights on the mechanisms by which IRE1 regulates the diversity of APC functions and to highlight its relevance in the coordination of innate and adaptive immunity.


Assuntos
Apresentação de Antígeno , Células Apresentadoras de Antígenos/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Células Apresentadoras de Antígenos/imunologia , Homeostase , Humanos
6.
Front Immunol ; 9: 209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472932

RESUMO

Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies.


Assuntos
Antígenos/imunologia , Memória Imunológica , Interleucina-17/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Imunoterapia Adotiva/métodos , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/transplante , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/transplante
7.
Nutrients ; 8(6)2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27304965

RESUMO

Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity.


Assuntos
Imunidade Celular , Linfócitos T/imunologia , Tretinoína/fisiologia , Imunidade Adaptativa , Animais , Diferenciação Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Suplementos Nutricionais , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Humanos , Tolerância Imunológica , Linfócitos/efeitos dos fármacos , Organogênese , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Timo/efeitos dos fármacos , Deficiência de Vitamina A/sangue , Deficiência de Vitamina A/tratamento farmacológico
8.
PLoS One ; 11(6): e0157889, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322617

RESUMO

T helper type 17 (Th17) lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, are present in intestinal lamina propria and have been described as important players driving intestinal inflammation. Recent evidence, supporting the notion of a functional and phenotypic instability of Th17 cells, has shown that Th17 differentiate into type 1 regulatory (Tr1) T cells during the resolution of intestinal inflammation. Moreover, it has been suggested that the expression of CD39 ectonucleotidase endows Th17 cells with immunosuppressive properties. However, the exact role of CD39 ectonucleotidase in Th17 cells has not been studied in the context of intestinal inflammation. Here we show that Th17 cells expressing CD39 ectonucleotidase can hydrolyze ATP and survive to ATP-induced cell death. Moreover, in vitro-generated Th17 cells expressing the CD39 ectonucleotidase produce IL-10 and are less pathogenic than CD39 negative Th17 cells in a model of experimental colitis in Rag-/- mice. Remarkably, we show that CD39 activity regulates the conversion of Th17 cells to IL-10-producing cells in vitro, which is abrogated in the presence of ATP and the CD39-specific inhibitor ARL67156. All these data suggest that CD39 expression by Th17 cells allows the depletion of ATP and is crucial for IL-10 production and survival during the resolution of intestinal inflammation.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Células Th17/imunologia , 5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Hidrólise , Inflamação/patologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Intestinos/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Fator de Crescimento Transformador beta1/metabolismo
9.
Biomed Res Int ; 2015: 137893, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583087

RESUMO

Maintaining the identity of Foxp3(+) regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity.


Assuntos
Inflamação/genética , Interleucina-17/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Vitamina A/administração & dosagem , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Celular/genética , Inflamação/imunologia , Interleucina-17/imunologia , Interleucina-2/imunologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/patologia , Tretinoína/administração & dosagem
10.
Immunology ; 146(4): 582-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26331349

RESUMO

The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-ß (TGF-ß), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-ß is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/biossíntese , Linfócitos T CD8-Positivos/metabolismo , Células-Tronco/metabolismo , Subpopulações de Linfócitos T/metabolismo , Monofosfato de Adenosina/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Citocinas/biossíntese , Regulação para Baixo , Memória Imunológica , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Fenótipo , Células-Tronco/citologia , Células-Tronco/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia
11.
FEBS Lett ; 589(22): 3454-60, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26226423

RESUMO

Extracellular ATP is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. However, extracellular adenosine acts as an immunoregulatory signal that modulates the function of several cellular components of the adaptive and innate immune response. Consequently, the balance between ATP and adenosine concentration is crucial in immune homeostasis. CD39 and CD73 are two ectonucleotidases that cooperate in the generation of extracellular adenosine through ATP hydrolysis, thus tilting the balance towards immunosuppressive microenvironments. Extracellular adenosine can prevent activation, proliferation, cytokine production and cytotoxicity in T cells through the stimulation of the A2A receptor; however, recent evidence has shown that adenosine may also affect other processes in T-cell biology. In this review, we discuss evidence that supports a role of CD73 and CD39 ectonucleotidases in controlling naive T-cell homeostasis and memory cell survival through adenosine production. Finally, we propose a novel hypothesis of a possible role of these ectonucleotidases and autocrine adenosine signaling in controlling T-cell differentiation.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Diferenciação Celular , Tolerância Imunológica , Linfócitos T/citologia , Adenosina/metabolismo , Humanos , Linfócitos T/imunologia
12.
Immunology ; 139(1): 61-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23278668

RESUMO

T helper type 17 (Th17) lymphocytes are found in high frequency in tumour-burdened animals and cancer patients. These lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, have a well-defined role in the development of inflammatory and autoimmune pathologies; however, their function in tumour immunity is less clear. We explored possible opposing anti-tumour and tumour-promoting functions of Th17 cells by evaluating tumour growth and the ability to promote tumour infiltration of myeloid-derived suppressor cells (MDSC), regulatory T cells and CD4(+)  interferon-γ(+) cells in a retinoic acid-like orphan receptor γt (RORγt) -deficient mouse model. A reduced percentage of Th17 cells in the tumour microenvironment in RORγt-deficient mice led to enhanced tumour growth, that could be reverted by adoptive transfer of Th17 cells. Differences in tumour growth were not associated with changes in the accumulation or suppressive function of MDSC and regulatory T cells but were related to a decrease in the proportion of CD4(+) T cells in the tumour. Our results suggest that Th17 cells do not affect the recruitment of immunosuppressive populations but favour the recruitment of effector Th1 cells to the tumour, thereby promoting anti-tumour responses.


Assuntos
Tolerância Imunológica , Neoplasias/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Mutantes , Neoplasias/genética , Neoplasias/patologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Células Th1/patologia , Células Th17/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA