Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 336: 122477, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652225

RESUMO

In rural areas, nitrate concentrations in surface waters most often originate from the leaching of excess N fertilizer in agricultural lands, whereas forested catchments often have good water quality. However, Douglas-fir plantations may induce nitrogen cycle unbalances which may lead to an excess of nitrate production in the soil. We hypothesize that the excess of production of nitrate in the soil and nitrate leaching to streamwater is greater in catchments planted with Douglas fir. We used paired catchments in both France and Luxembourg with different land covers (Douglas-fir, Spruce, Deciduous, Grassland and clearcut) which were monitored over a 3-5 year period in order to assess the effect of Douglas-fir plantations on the chemical composition of surface water. Nitrate concentration in the soil and groundwater were also monitored. The results show that nitrate concentrations in streams draining Douglas-fir catchments were two to ten times higher than in streams draining other land covers, but were similar to the clearcut catchment. Nitrate concentrations under Douglas-fir in groundwater (up to 50 mg L-1) and in the soil were also higher than under all other land covers. Soil nitrate concentration was related to stream nitrate concentration. This suggests that soil processes, through excessive nitrate production under Douglas-fir, are driving the nitrate concentration in the stream water and our hypothesis of a transfer of a fairly large proportion of this excessive production from the soil to the stream is supported. This study also shows that nitrate concentrations in surface and ground waters in rural areas could also originate from Douglas fir forested catchments. The impact of Douglas-fir is nevertheless reduced downstream through a dilution effect: mixing tree species at the catchment scale could thus be a solution to mitigate the effect of Douglas-fir on nitrate concentration in surface waters.


Assuntos
Água Subterrânea , Pseudotsuga , Nitratos/análise , Luxemburgo , Monitoramento Ambiental , Solo , Europa (Continente) , França
2.
Front Physiol ; 12: 651167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025446

RESUMO

BACKGROUND: Muscular fatigue and injury are frequently observed in critically ill COVID-19 patients. The aim of this study was to determine whether different muscle adipose tissue depots are associated with mortality and muscle damage in patients affected by COVID-19 admitted to the ICU. METHODS: CT images were obtained in 153 ICU patients with COVID-19 (121 males and 32 females). Height, weight, body mass index (BMI), C-reactive protein, Creatine PhosphoKinase (CPK), muscle density, and intermuscular adipose tissue (IMAT) were measured. RESULTS: Participants in the highest tertile of IMAT/muscle had the shorter 28-day survival from ICU admission as compared to subjects in the first tertile. Estimates derived from the Cox proportional hazard models, after adjustment for age, sex, and BMI, confirmed the results of the survival analysis (HR 3.94, 95% CI: 1.03-15.09). Participants in the lowest tertile of muscle density had the shorter survival at 28 days from ICU admission as compared to subjects in the highest tertile (HR 3.27, 95% CI: 1.18-4.61), but the relationship was no longer significant when age was included in the model. Subjects in the second muscle density tertile did not show an increased risk.Participants in the highest tertile of IMAT/muscle and those in the lowest tertile of muscle density showed both significantly higher CPK adjusted for weight values as evaluated during the first 8 days of hospitalization. CONCLUSION: Our data seem to suggest that higher levels of IMAT/muscle and low muscle density are both associated with higher risk of ICU mortality and muscle injury as evaluated with CPK level.

3.
Environ Microbiol ; 22(3): 1141-1153, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31867821

RESUMO

Some temperate tree species are associated with very low soil nitrification rates, with important implications for forest N dynamics, presumably due to their potential for biological nitrification inhibition (BNI). However, evidence for BNI in forest ecosystems is scarce so far and the nitrifier groups controlled by BNI-tree species have not been identified. Here, we evaluated how some tree species can control soil nitrification by providing direct evidence of BNI and identifying the nitrifier group(s) affected. First, by comparing 28 year-old monocultures of several tree species, we showed that nitrification rates correlated strongly with the abundance of the nitrite oxidizers Nitrobacter (50- to 1000-fold changes between tree monocultures) and only weakly with the abundance of ammonia oxidizing archaea (AOA). Second, using reciprocal transplantation of soil cores between low and high nitrification stands, we demonstrated that nitrification changed 16 months after transplantation and was correlated with changes in the abundance of Nitrobacter, not AOA. Third, extracts of litter or soil collected from the low nitrification stands of Picea abies and Abies nordmanniana inhibited the growth of Nitrobacter hamburgensis X14. Our results provide for the first time direct evidence of BNI by tree species directly affecting the abundance of Nitrobacter.


Assuntos
Ecossistema , Interações Hospedeiro-Patógeno/fisiologia , Nitrificação , Nitrobacter/fisiologia , Microbiologia do Solo , Solo/química , Árvores/microbiologia , Archaea/crescimento & desenvolvimento , Oxirredução
4.
Food Chem ; 274: 831-839, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30373017

RESUMO

Effects of fertilization practices, mineral (M) and organo-mineral (OM), on molecular composition of Nero di Troia cultivar grape berries was studied using conventional chemical analysis, Magnetic Resonance Imaging (MRI) and 1H NMR spectroscopy on intact berries and extracts, respectively, and through analysis of yeast species developed on grape skins. Plants vegetative status did not differ between the two fertilization practices, whereas some grape juice chemical characteristics differed in fertilized grapes. MRI provided information on grape berries morphology through weighted images depending on spin-spin (T2) and spin-lattice (T1) relaxation times. T1 values were the highest in OM grape berries. 1H NMR metabolic profile, combined with chemometric analysis, evidenced significant differences for some metabolites (valine, leucine, isoleucine, proline, and malic acid). Furthermore, higher frequency of yeasts genus Starmella sp., isolated from OM grape berries contributed to reinforcing the found results on the physiological response of wine grape Nero di Troia to fertilization.


Assuntos
Fertilizantes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Vitis/metabolismo , Leveduras/isolamento & purificação , Agricultura/métodos , Aminoácidos/análise , Aminoácidos/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Itália , Malatos/análise , Malatos/metabolismo , Metaboloma , Minerais/farmacologia , Vitis/química , Vitis/microbiologia , Vinho , Leveduras/genética
5.
Sci Rep ; 7(1): 8411, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827706

RESUMO

Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N2O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N2O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.


Assuntos
Azospirillum/crescimento & desenvolvimento , Carbono/análise , Interações Microbianas , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Zea mays/microbiologia , Azospirillum/metabolismo , Desnitrificação , Nitrificação , Óxidos de Nitrogênio/metabolismo , Raízes de Plantas/microbiologia
6.
J Sci Food Agric ; 96(7): 2440-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26249321

RESUMO

BACKGROUND: A laboratory incubation experiment and greenhouse studies investigated the impact of organo-mineral (OM) fertilization as an alternative practice to conventional mineral (M) fertilization on nitrogen (N) uptake and losses in perennial ryegrass (Lolium perenne) as well as on soil microbial biomass and ammonia oxidizers. RESULTS: While no significant difference in plant productivity and ammonia emissions between treatments could be detected, an increase in soil total N content and an average 17.9% decrease in nitrates leached were observed in OM fertilization compared with M fertilization. The microbial community responded differentially to treatments, suggesting that the organic matter fraction of the OM fertilizer might have influenced N immobilization in the microbial biomass in the short-medium term. Furthermore, nitrate contents in fertilized soils were significantly related to bacterial but not archaeal amoA gene copies, whereas in non-fertilized soils a significant relationship between soil nitrates and archaeal but not bacterial amoA copies was found. CONCLUSION: The application of OM fertilizer to soil maintained sufficient productivity and in turn increased N use efficiency and noticeably reduced N losses. Furthermore, in this experiment, ammonia-oxidizing bacteria drove nitrification when an N source was added to the soil, whereas ammonia-oxidizing archaea were responsible for ammonia oxidation in non-fertilized soil. © 2015 Society of Chemical Industry.


Assuntos
Amônia/química , Fertilizantes/análise , Solo/química , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/genética , DNA Bacteriano , Lolium , Nitrogênio/química , Oxirredução , Água/química
7.
PLoS One ; 9(8): e105515, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25144665

RESUMO

Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil health and sustainable productivity.


Assuntos
Agricultura , Bactérias/classificação , Biodiversidade , Estações do Ano , Microbiologia do Solo , Bactérias/genética , DNA Bacteriano , Ecossistema , Humanos , Itália , Região do Mediterrâneo , Filogenia , RNA Ribossômico 16S , Solo/química
8.
Genomics ; 103(1): 1-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316132

RESUMO

Addressing the functionality of genomes is one of the most important and challenging tasks of today's biology. In particular the ability to link genotypes to corresponding phenotypes is of interest in the reconstruction and biotechnological manipulation of metabolic pathways. Over the last years, the OmniLog™ Phenotype Microarray (PM) technology has been used to address many specific issues related to the metabolic functionality of microorganisms. However, computational tools that could directly link PM data with the gene(s) of interest followed by the extraction of information on gene-phenotype correlation are still missing. Here we present DuctApe, a suite that allows the analysis of both genomic sequences and PM data, to find metabolic differences among PM experiments and to correlate them with KEGG pathways and gene presence/absence patterns. As example, an application of the program to four bacterial datasets is presented. The source code and tutorials are available at http://combogenomics.github.io/DuctApe/.


Assuntos
Genômica/métodos , Análise em Microsséries/métodos , Fenótipo , Software , Acinetobacter/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Escherichia/metabolismo , Genótipo , Humanos , Redes e Vias Metabólicas , Modelos Moleculares , Sinorhizobium/metabolismo , Zymomonas/metabolismo
9.
Appl Microbiol Biotechnol ; 97(3): 1299-315, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22290652

RESUMO

The alteration of the organic matter (OM) and the composition of bacterial community in microbial fuel cells (MFCs) supplied with soil (S) and a composted organic fertilizer (A) was examined at the beginning and at the end of 3 weeks of incubation under current-producing as well as no-current-producing conditions. Denaturing gradient gel electrophoresis revealed a significant alteration of the microbial community structure in MFCs generating electricity as compared with no-current-producing MFCs. The genetic diversity of cultivable bacterial communities was assessed by random amplified polymorphic DNA (RAPD) analysis of 106 bacterial isolates obtained by using both generic and elective media. Sequencing of the 16S rRNA genes of the more representative RAPD groups indicated that over 50.4% of the isolates from MFCs fed with S were Proteobacteria, 25.1% Firmicutes, and 24.5% Actinobacteria, whereas in MFCs supplied with A 100% of the dominant species belonged to γ-Proteobacteria. The chemical analysis performed by fractioning the OM and using thermal analysis showed that the amount of total organic carbon contained in the soluble phase of the electrochemically active chambers significantly decreased as compared to the no-current-producing systems, whereas the OM of the solid phase became more humified and aromatic along with electricity generation, suggesting a significant stimulation of a humification process of the OM. These findings demonstrated that electroactive bacteria are commonly present in aerobic organic substrates such as soil or a fertilizer and that MFCs could represent a powerful tool for exploring the mineralization and humification processes of the soil OM.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biota , Fertilizantes , Compostos Orgânicos/análise , Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Eletricidade , Variação Genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA