Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 10(2): 190-201, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377633

RESUMO

A refined Desulfovibrio vulgaris Hildenborough flux balance analysis (FBA) model (iJF744) was developed, incorporating 1016 reactions that include 744 genes and 951 metabolites. A draft model was first developed through automatic model reconstruction using the ModelSeed Server and then curated based on existing literature. The curated model was further refined by incorporating three recently proposed redox reactions involving the Hdr-Flx and Qmo complexes and a lactate dehydrogenase (LdhAB, DVU 3027-3028) indicated by mutation and transcript analyses to serve electron transfer reactions central to syntrophic and respiratory growth. Eight different variations of this model were evaluated by comparing model predictions to experimental data determined for four different growth conditions - three for sulfate respiration (with lactate, pyruvate or H2 /CO2 -acetate) and one for fermentation in syntrophic coculture. The final general model supports (i) a role for Hdr-Flx in the oxidation of DsrC and ferredoxin, and reduction of NAD+ in a flavin-based electron confurcating reaction sequence, (ii) a function of the Qmo complex in receiving electrons from the menaquinone pool and potentially from ferredoxin to reduce APS and (iii) a reduction of the soluble DsrC by LdhAB and a function of DsrC in electron transfer reactions other than sulfite reduction.


Assuntos
Desulfovibrio vulgaris/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/genética , Transporte de Elétrons , Modelos Biológicos , Mutação , Oxirredução , Sulfatos/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(41): 14822-7, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267659

RESUMO

Many species have evolved to function as specialized mutualists, often to the detriment of their ability to survive independently. However, there are few, if any, well-controlled observations of the evolutionary processes underlying the genesis of new mutualisms. Here, we show that within the first 1,000 generations of initiating independent syntrophic interactions between a sulfate reducer (Desulfovibrio vulgaris) and a hydrogenotrophic methanogen (Methanococcus maripaludis), D. vulgaris frequently lost the capacity to grow by sulfate respiration, thus losing the primary physiological attribute of the genus. The loss of sulfate respiration was a consequence of mutations in one or more of three key genes in the pathway for sulfate respiration, required for sulfate activation (sat) and sulfate reduction to sulfite (apsA or apsB). Because loss-of-function mutations arose rapidly and independently in replicated experiments, and because these mutations were correlated with enhanced growth rate and productivity, gene loss could be attributed to natural selection, even though these mutations should significantly restrict the independence of the evolved D. vulgaris. Together, these data present an empirical demonstration that specialization for a mutualistic interaction can evolve by natural selection shortly after its origin. They also demonstrate that a sulfate-reducing bacterium can readily evolve to become a specialized syntroph, a situation that may have often occurred in nature.


Assuntos
Desulfovibrio vulgaris/genética , Evolução Molecular Direcionada , Mathanococcus/genética , Técnicas de Cocultura , Mutação/genética , Oxirredução , Fenótipo , Sulfatos/metabolismo , Simbiose
3.
Water Res ; 47(19): 7019-31, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24200007

RESUMO

Activated sludge is one of the most abundant and effective wastewater treatment process used to treat wastewater, and has been used in developed countries for nearly a century. In all that time, several hundreds of studies have explored the bacterial communities responsible for treatment, but most studies were based on a handful of samples and did not consider temporal dynamics. In this study, we used the DNA fingerprinting technique called automated ribosomal intergenic spacer region analysis (ARISA) to study bacterial community dynamics over a two-year period in two different treatment trains. We also used quantitative PCR to measure the variation of five phylogenetically-defined clades within the Accumulibacter lineage, which is a model polyphosphate accumulating organism. The total bacterial community exhibited seasonal patterns of change reminiscent of those observed in lakes and oceans. Surprisingly, all five Accumulibacter clades were present throughout the study, and the total Accumulibacter community was relatively stable. However, the abundance of each clade did fluctuate through time. Clade IIA dynamics correlated positively with temperature (ρ = 0.65, p < 0.05) while Clade IA dynamics correlated negatively with temperature (ρ = -0.35, p < 0.05). This relationship with temperature hints at the mechanisms that may be driving the seasonal patterns in overall bacterial community dynamics and provides further evidence for ecological differentiation among clades within the Accumulibacter lineage. This work provides a valuable baseline for activated sludge bacterial community variation.


Assuntos
Consórcios Microbianos/fisiologia , Fósforo/isolamento & purificação , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Impressões Digitais de DNA , DNA Intergênico , Consórcios Microbianos/genética , Fósforo/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Polifosfatos , Estações do Ano , Temperatura , Wisconsin
4.
ISME J ; 7(12): 2301-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23887171

RESUMO

Members of the genus Candidatus Accumulibacter are important in many wastewater treatment systems performing enhanced biological phosphorus removal (EBPR). The Accumulibacter lineage can be subdivided phylogenetically into multiple clades, and previous work showed that these clades are ecologically distinct. The complete genome of Candidatus Accumulibacter phosphatis strain UW-1, a member of Clade IIA, was previously sequenced. Here, we report a draft genome sequence of Candidatus Accumulibacter spp. strain UW-2, a member of Clade IA, assembled following shotgun metagenomic sequencing of laboratory-scale bioreactor sludge. We estimate the genome to be 80-90% complete. Although the two clades share 16S rRNA sequence identity of >98.0%, we observed a remarkable lack of synteny between the two genomes. We identified 2317 genes shared between the two genomes, with an average nucleotide identity (ANI) of 78.3%, and accounting for 49% of genes in the UW-1 genome. Unlike UW-1, the UW-2 genome seemed to lack genes for nitrogen fixation and carbon fixation. Despite these differences, metabolic genes essential for denitrification and EBPR, including carbon storage polymer and polyphosphate metabolism, were conserved in both genomes. The ANI from genes associated with EBPR was statistically higher than that from genes not associated with EBPR, indicating a high selective pressure in EBPR systems. Further, we identified genomic islands of foreign origins including a near-complete lysogenic phage in the Clade IA genome. Interestingly, Clade IA appeared to be more phage susceptible based on it containing only a single Clustered Regularly Interspaced Short Palindromic Repeats locus as compared with the two found in Clade IIA. Overall, the comparative analysis provided a genetic basis to understand physiological differences and ecological niches of Accumulibacter populations, and highlights the importance of diversity in maintaining system functional resilience.


Assuntos
Genoma Bacteriano , Fósforo/metabolismo , Águas Residuárias/microbiologia , Biodiversidade , Reatores Biológicos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/genética , Desnitrificação , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Homologia de Sequência do Ácido Nucleico , Esgotos/microbiologia
5.
Environ Microbiol Rep ; 1(6): 583-588, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20808723

RESUMO

The capability of "Candidatus Accumulibacter" to use nitrate as an electron acceptor for phosphorus uptake was investigated using two activated sludge communities. The two communities were enriched in Accumulibacter clade IA and clade IIA, respectively. By performing a series of batch experiments, we found that clade IA was able to couple nitrate reduction with phosphorus uptake, but clade IIA could not. These results agree with a previously proposed hypothesis that different populations of Accumulibacter have different nitrate reduction capabilities, and they will help to understand the ecological roles that these two clades provide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA