Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 74, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013193

RESUMO

Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of dopamine (DA) and other catecholamines, and its dysfunction leads to DA deficiency and parkinsonisms. Inhibition by catecholamines and reactivation by S40 phosphorylation are key regulatory mechanisms of TH activity and conformational stability. We used Cryo-EM to determine the structures of full-length human TH without and with DA, and the structure of S40 phosphorylated TH, complemented with biophysical and biochemical characterizations and molecular dynamics simulations. TH presents a tetrameric structure with dimerized regulatory domains that are separated 15 Å from the catalytic domains. Upon DA binding, a 20-residue α-helix in the flexible N-terminal tail of the regulatory domain is fixed in the active site, blocking it, while S40-phosphorylation forces its egress. The structures reveal the molecular basis of the inhibitory and stabilizing effects of DA and its counteraction by S40-phosphorylation, key regulatory mechanisms for homeostasis of DA and TH.


Assuntos
Dopamina/farmacologia , Inibidores Enzimáticos/farmacologia , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/química , Sequência de Aminoácidos , Domínio Catalítico , Catecolaminas/metabolismo , Microscopia Crioeletrônica , Dopamina/química , Dopamina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
2.
J Pers Med ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834538

RESUMO

Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.

3.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208232

RESUMO

Heat shock protein (Hsp) synthesis is upregulated in a wide range of cancers to provide the appropriate environment for tumor progression. The Hsp110 and Hsp70 families have been associated to cancer cell survival and resistance to chemotherapy. In this study, we explore the strategy of drug repurposing to find new Hsp70 and Hsp110 inhibitors that display toxicity against melanoma cancer cells. We found that the hits discovered using Apg2, a human representative of the Hsp110 family, as the initial target bind also to structural regions present in members of the Hsp70 family, and therefore inhibit the remodeling activity of the Hsp70 system. One of these compounds, the spasmolytic agent pinaverium bromide used for functional gastrointestinal disorders, inhibits the intracellular chaperone activity of the Hsp70 system and elicits its cytotoxic activity specifically in two melanoma cell lines by activating apoptosis. Docking and molecular dynamics simulations indicate that this compound interacts with regions located in the nucleotide-binding domain and the linker of the chaperones, modulating their ATPase activity. Thus, repurposing of pinaverium bromide for cancer treatment appears as a promising novel therapeutic approach.

4.
Biochimie ; 183: 126-132, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33309753

RESUMO

Tyrosine hydroxylase (TH) catalyses the (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)-dependent conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-Dopa), which is the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters and hormones. Dysfunctional mutant TH causes tyrosine hydroxylase deficiency (THD), characterized by symptoms ranging from mild l-Dopa responsive dystonia to severe neuropathy. THD-associated mutations often present misfolding and a propensity to aggregate, characteristics that can also be manifested by dysregulated wild-type TH. TH - and subsequently dopamine - is also reduced in Parkinson's disease (PD) due to the selective death of dopaminergic neurons. Thus, TH is a target for stabilizing small molecular weight compounds that can function as pharmacological chaperones, restoring enzyme folding and function. In this work we carried out a screening of a compound library with 1280 approved drugs and we identified levalbuterol, a beta2-adrenergic agonist that is broadly used in asthma treatment, as an interesting validated binder of human TH. Levalbuterol stabilized TH with reduced affinity compared to dopamine, the end-product and regulatory feedback inhibitor of TH, but without compromising enzymatic activity. Moreover, levalbuterol also delays the formation of TH aggregates and makes the enzyme less sensitive to dopamine, effects that could contribute to ameliorate disorders related to TH, such as THD and PD.


Assuntos
Dopamina/química , Levalbuterol/química , Agregados Proteicos , Dobramento de Proteína , Tirosina 3-Mono-Oxigenase/química , Distúrbios Distônicos/congênito , Distúrbios Distônicos/enzimologia , Distúrbios Distônicos/genética , Humanos , Tirosina 3-Mono-Oxigenase/genética
5.
FEBS J ; 288(9): 2930-2955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33175445

RESUMO

Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown. Here, we identified a 28-amino-acid stretch in the mammalian Arc N-terminal (NT) domain that is necessary and sufficient for self-association. Within this region, we identified a 7-residue oligomerization motif, critical for the formation of virus-like capsids. Purified wild-type Arc formed capsids as shown by transmission and cryo-electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic-resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled-coil interface, strongly supporting NT-NT domain interactions in Arc oligomerization. The NT coil-coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc-facilitated endocytosis. Furthermore, using single-molecule photobleaching, we show that Arc mRNA greatly enhances higher-order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self-association above the dimer stage, mRNA-induced oligomerization, and formation of virus-like capsids. DATABASE: The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.


Assuntos
Motivos de Aminoácidos/genética , Proteínas do Citoesqueleto/ultraestrutura , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/ultraestrutura , Neurônios/metabolismo , Conformação Proteica , Animais , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/ultraestrutura , Humanos , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Domínios Proteicos/genética , RNA/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Vírion/genética
6.
Sci Rep ; 6: 30390, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27462005

RESUMO

Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners.


Assuntos
Tirosina 3-Mono-Oxigenase/química , Domínio Catalítico , Dopamina/farmacologia , Estabilidade Enzimática , Humanos , Ligação Proteica , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Amino Acids ; 48(5): 1221-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825549

RESUMO

Tyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (ß, η, ζ, γ and ε) of different dimer composition. All 14-3-3 homodimers and their respective 14-3-3ε-heterodimers bound with similar high affinity (K d values of 1.4-3.8 nM) to serine19 phosphorylated human TH (TH-pS19). We similarly observed a consistent activation of bovine (3.3- to 4.4-fold) and human TH-pS19 (1.3-1.6 fold) across all the different 14-3-3 dimer species, with homodimeric 14-3-3γ being the strongest activator. Both hetero- and homodimers of 14-3-3 strongly inhibited dephosphorylation of TH-pS19, and we speculate if this is an important homeostatic mechanism of 14-3-3 target-protein regulation in vivo. We conclude that TH is a robust interaction partner of different 14-3-3 dimer types with moderate variability between the 14-3-3 dimers on their regulation of TH.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Regulação Enzimológica da Expressão Gênica , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Animais , Bovinos , Dimerização , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Alinhamento de Sequência , Tirosina 3-Mono-Oxigenase/genética
8.
J Med Chem ; 58(21): 8402-12, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26458252

RESUMO

Phenylalanine hydroxylase catalyzes the first step in the synthesis of pyomelanin, a pigment that aids in the acquisition of essential iron in certain bacteria. In this work, we present the development and application of a drug discovery protocol by targeting this enzyme in Legionella pneumophila, the major causative agent of Legionnaires' disease. We employ a combination of high-throughput screening to identify small-molecule binders, enzymatic activity measurements to identify inhibitors in vitro, and the verification of the inhibitory effect in vivo. The most potent inhibitor shows an IC50 value in the low micromolar range and successfully abolishes the synthesis of pyomelanin in L. pneumophila cultures at 10 µM. Thus, this compound represents a novel and effective tool for investigating the role of pyomelanin in the biology and pathogenicity of this organism. Altogether, the results demonstrate a successful pathway for drug development focusing on binding specificity in the initial high-throughput screening steps.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/enzimologia , Doença dos Legionários/microbiologia , Melaninas/metabolismo , Fenilalanina Hidroxilase/antagonistas & inibidores , Descoberta de Drogas , Humanos , Ferro/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/tratamento farmacológico , Ligantes , Melaninas/antagonistas & inibidores , Fenilalanina Hidroxilase/metabolismo
9.
Brain ; 138(Pt 10): 2948-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276013

RESUMO

Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.


Assuntos
Encéfalo/metabolismo , Catecolaminas/metabolismo , Transtornos dos Movimentos/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biopterinas/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Dopaminérgicos/uso terapêutico , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Levodopa/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Transtornos dos Movimentos/tratamento farmacológico , Mutação/genética , Tiroxina/metabolismo
10.
IUBMB Life ; 65(4): 341-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23457044

RESUMO

Mammalian phenylalanine hydroxylase (PAH) catalyzes the rate-limiting step in the phenylalanine catabolism, consuming about 75% of the phenylalanine input from the diet and protein catabolism under physiological conditions. In humans, mutations in the PAH gene lead to phenylketonuria (PKU), and most mutations are mainly associated with PAH misfolding and instability. The established treatment for PKU is a phenylalanine-restricted diet and, recently, supplementation with preparations of the natural tetrahydrobiopterin cofactor also shows effectiveness for some patients. Since 1997 there has been a significant increase in the understanding of the structure, catalytic mechanism, and regulation of PAH by its substrate and cofactor, in addition to improved correlations between genotype and phenotype in PKU. Importantly, there has also been an increased number of studies on the structure and function of PAH from bacteria and lower eukaryote organisms, revealing an additional anabolic role of the enzyme in the synthesis of melanin-like pigments. In this review, we discuss these recent studies, which contribute to define the evolutionary adaptation of the PAH structure and function leading to sophisticated regulation for effective catabolic processing of phenylalanine in mammalian organisms.


Assuntos
Fenilalanina Hidroxilase/química , Fenilalanina/metabolismo , Fenilcetonúrias/genética , Animais , Biopterinas/análogos & derivados , Biopterinas/química , Humanos , Cinética , Melaninas/biossíntese , Melaninas/química , Mutação , Fenilalanina/química , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Conformação Proteica , Dobramento de Proteína
11.
PLoS One ; 7(9): e46209, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049981

RESUMO

BACKGROUND: Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH), the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions. METHODOLOGY/PRINCIPAL FINDINGS: Comparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA) appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II) requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T(m)) = 79 ± 0.5°C, a high specific activity at 37°C (10.2 ± 0.3 µmol L-Tyr/mg/min) and low affinity for the substrate (K(m) (L-Phe) = 735 ± 50 µM. CONCLUSIONS/SIGNIFICANCE: lpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.


Assuntos
Legionella pneumophila/enzimologia , Melaninas/biossíntese , Fenilalanina Hidroxilase/metabolismo , Proteínas de Bactérias , Estabilidade Enzimática , Temperatura , Tirosina/metabolismo
12.
BMC Struct Biol ; 11: 49, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185200

RESUMO

BACKGROUND: Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear. RESULTS: Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA. CONCLUSIONS: For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.


Assuntos
Ciclofilina A/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , HIV-1/metabolismo , Humanos , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
13.
Amino Acids ; 39(5): 1463-75, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20480196

RESUMO

Phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of L-Phe to L-Tyr. Dysfunctional PAH results in phenylketonuria and mammalian PAH is therefore highly regulated and displays positive cooperativity for L-Phe (Hill coefficient (h)=2). L-Phe does not bind to the regulatory ACT domain in full-length tetrameric human PAH and cooperativity is elicited by homotropic binding to the catalytic site (Thórólfsson et al. in Biochemistry 41:7573-7585, 2002). PAH from Caenorhabditis elegans (cePAH) is devoid of cooperativity for L-Phe (h=0.9), and, as shown in this work, structural analysis reveal an additional L-Phe binding site at the regulatory domain of full-length cePAH. This site involves the GA(S)L/ISRP motifs, which are also found in ACT domains of other L-Phe binding proteins, such as prephenate dehydratase. Isothermal titration calorimetry further demonstrated 2 binding sites per subunit for cePAH versus ~1 for hPAH. Steric occlusion of the regulatory site, notably by residues Lys215/Tyr216 from the adjacent catalytic domain, appears to hinder regulatory binding in full-length hPAH. Accordingly, the humanized mutant Q215K/N216Y of cePAH binds ~1.4 L-Phe/subunit. This mutant also displays high catalytic activity and certain positive cooperativity for L-Phe (h=1.4). Our results support that the acquisition of positive cooperativity in mammalian forms of PAH is accompanied by a closure of the regulatory L: -Phe binding site. Concomitantly, the function of the regulatory ACT domain appears to be adapted from amino acid binding to serving the communication of conformational changes among catalytic subunits.


Assuntos
Caenorhabditis elegans/enzimologia , Fenilalanina Hidroxilase/química , Fenilalanina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Calorimetria , Dicroísmo Circular , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Alinhamento de Sequência , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA