Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816615

RESUMO

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia
2.
Sci Transl Med ; 16(748): eadn0223, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38753806

RESUMO

A protective HIV vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost after eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Animais , Humanos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinação , Imunização Secundária , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia
3.
Autophagy ; 17(2): 402-419, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32019403

RESUMO

Almost a billion people worldwide are chronically undernourished. Herein, using a mouse model of coxsackievirus B3 (CVB3) infection, we report that a single day of food restriction (FR) markedly increases susceptibility to attenuated enterovirus infection, replication, and disease. These "pro-viral" effects, which are rapidly-reversed by the restoration of food, are mediated by several genes whose expression is altered by FR, and which support CVB3 replication. Central to this is TFEB, a protein whose expression and activation status are rapidly increased by FR. TFEB, which regulates the transcription of >100 genes involved in macroautophagy/autophagy and lysosomal biogenesis, responds similarly to both FR and CVB3 infection and plays a pivotal role in determining host susceptibility to CVB3. We propose that, by upregulating TFEB, FR generates an intracellular environment that is more hospitable to the incoming virus, facilitating its replication. This interplay between nutritional status and enterovirus replication has implications for human health and, perhaps, for the evolution of these viruses.Abbreviations: Atg/ATG: autophagy-related; CAR: Coxsackievirus and adenovirus receptor; Cas9: CRISPR associated protein 9; Cre: recombinase that causes recombination; CRISPR: clustered regularly interspaced short palindromic repeats; Ctsb/CTSB: cathepsin B; CVB3: coxsackievirus B3; DsRedCVB3: a recombinant CVB3 that encodes the Discosoma red fluorescent protein; EL: elastase; FR: food restriction; GFP: green fluorescent protein; gRNA: guide RNA; HBSS: Hanks Buffered Salt Solution; LYNUS: lysosomal nutrient sensing machinery; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; Nluc: nanoluciferase; NlucCVB3: a recombinant CVB3 encoding nanoluciferase; pfu: plaque-forming unit(s); p.i.: post infection; rCVB: recombinant coxsackievirus B3; RPS6KB/p70S6K: ribosomal protein S6 kinase; RT: room temperature; siRNA: small interfering RNA; TFEB: transcription factor EB; tg: transgenic; TUBB: ß-tubulin; UNINF: uninfected; wrt: with respect to; WT: wild type.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Infecções por Coxsackievirus/virologia , Pancreatite/virologia , Animais , Autofagia/fisiologia , Enterovirus/isolamento & purificação , Células HeLa , Humanos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Pancreatite/metabolismo , Replicação Viral/genética
4.
Commun Biol ; 3(1): 580, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067530

RESUMO

Previous research suggests that hepatocytes catabolize chemical toxins but do not remove microbial agents, which are filtered out by other liver cells (Kupffer cells and endothelial cells). Here we show that, contrary to current understanding, hepatocytes trap and rapidly silence type B coxsackieviruses (CVBs). In genetically wildtype mice, this activity causes hepatocyte damage, which is alleviated in mice carrying a hepatocyte-specific deletion of the coxsackievirus-adenovirus receptor. However, in these mutant mice, there is a dramatic early rise in blood-borne virus, followed by accelerated systemic disease and increased mortality. Thus, wild type hepatocytes act similarly to a sponge for CVBs, protecting against systemic illness at the expense of their own survival. We speculate that hepatocytes may play a similar role in other viral infections as well, thereby explaining why hepatocytes have evolved their remarkable regenerative capacity. Our data also suggest that, in addition to their many other functions, hepatocytes might be considered an integral part of the innate immune system.


Assuntos
Infecções por Coxsackievirus/virologia , Resistência à Doença , Enterovirus/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Animais , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/deficiência , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Interferon-alfa/metabolismo , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos Knockout , Mortalidade , Carga Viral , Viremia
5.
PLoS Pathog ; 15(4): e1007674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958867

RESUMO

Viral myocarditis is a serious disease, commonly caused by type B coxsackieviruses (CVB). Here we show that innate immune protection against CVB3 myocarditis requires the IFIT (IFN-induced with tetratricopeptide) locus, which acts in a biphasic manner. Using IFIT locus knockout (IFITKO) cardiomyocytes we show that, in the absence of the IFIT locus, viral replication is dramatically increased, indicating that constitutive IFIT expression suppresses CVB replication in this cell type. IFNß pre-treatment strongly suppresses CVB3 replication in wild type (wt) cardiomyocytes, but not in IFITKO cardiomyocytes, indicating that other interferon-stimulated genes (ISGs) cannot compensate for the loss of IFITs in this cell type. Thus, in isolated wt cardiomyocytes, the anti-CVB3 activity of IFITs is biphasic, being required for protection both before and after T1IFN signaling. These in vitro findings are replicated in vivo. Using novel IFITKO mice we demonstrate accelerated CVB3 replication in pancreas, liver and heart in the hours following infection. This early increase in virus load in IFITKO animals accelerates the induction of other ISGs in several tissues, enhancing virus clearance from some tissues, indicating that-in contrast to cardiomyocytes-other ISGs can offset the loss of IFITs from those cell types. In contrast, CVB3 persists in IFITKO hearts, and myocarditis occurs. Thus, cardiomyocytes have a specific, biphasic, and near-absolute requirement for IFITs to control CVB infection.


Assuntos
Proteínas de Transporte/fisiologia , Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/patogenicidade , Miocardite/prevenção & controle , Miócitos Cardíacos/enzimologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/metabolismo , Miocardite/virologia , Proteínas de Ligação a RNA , Replicação Viral
6.
Virology ; 512: 104-112, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28950225

RESUMO

Type B coxsackieviruses (CVB) can cause myocarditis and dilated cardiomyopathy (DCM), a potentially-fatal sequela that has been correlated to the persistence of viral RNA. Herein, we demonstrate that cardiac RNA persistence can be established even after an inapparent primary infection. Using an inducible Cre/lox mouse model, we ask: (i) Does persistent CVB3 RNA cause ongoing immune activation? (ii) If T1IFN signaling into cardiomyocytes is ablated after RNA persistence is established, is there any change in the abundance of persistent CVB3 RNA and/or does cytopathic infectious virus re-emerge? (iii) Does this loss of T1IFN responsiveness by cardiomyocytes lead to the recurrence/exacerbation of myocarditis? Our findings suggest that persistent enteroviral RNAs probably do not contribute to ongoing myocardial disease, and are more likely to be the fading remnants of a recent, possibly sub-clinical, primary infection which may have set in motion the process that ultimately ends in DCM.


Assuntos
Enterovirus/fisiologia , Miócitos Cardíacos/virologia , RNA Viral/fisiologia , Animais , Cardiomiopatia Dilatada/virologia , Infecções por Coxsackievirus/virologia , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica , Integrases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/virologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia , Carga Viral
7.
PLoS Pathog ; 12(8): e1005861, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580079

RESUMO

Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαßR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host's immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell's requirement for a cytokine is highly dependent on the cell's maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene's impact by modulating its expression or function in a temporally-controllable manner.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Transdução de Sinais/imunologia , Animais , Interferon Tipo I/genética , Coriomeningite Linfocítica/genética , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética
8.
Virology ; 498: 69-81, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27564543

RESUMO

CD8(+) memory T cells produce IFNγ within hours of secondary infection, but this is quickly terminated in vivo despite the presence of stimulatory viral antigen, suggesting that active suppression occurs. Herein, we investigated the in vivo effector function of CD8(+) memory T cells during successive encounters with viral antigen. CD8(+) T cells in immune mice receiving prior viral or peptide challenge failed to reproduce IFNγ during LCMV rechallenge. Surprisingly, this refractory state was induced even in memory cells that had not encountered their cognate antigen, indicating that the silencing of CD8(+) T cell responses is TCR-independent. Direct injection of IFNγ also suppressed the ability of virus-specific memory cells to respond to subsequent viral challenge. We propose the existence of a negative feedback loop whereby IFNγ, produced by memory CD8(+) T cells to combat viral challenge, acts - directly or indirectly - to limit its further production.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/biossíntese , Imunomodulação , Interferon gama/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Granzimas/metabolismo , Memória Imunológica , Imunofenotipagem , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Fenótipo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
9.
Autophagy ; 11(8): 1389-407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090585

RESUMO

RNA viruses modify intracellular membranes to produce replication scaffolds. In pancreatic cells, coxsackievirus B3 (CVB3) hijacks membranes from the autophagy pathway, and in vivo disruption of acinar cell autophagy dramatically delays CVB3 replication. This is reversed by expression of GFP-LC3, indicating that CVB3 may acquire membranes from an alternative, autophagy-independent, source(s). Herein, using 3 recombinant CVB3s (rCVB3s) encoding different proteins (proLC3, proLC3(G120A), or ATG4B(C74A)), we show that CVB3 is, indeed, flexible in its utilization of cellular membranes. When compared with a control rCVB3, all 3 viruses replicated to high titers in vivo, and caused severe pancreatitis. Most importantly, each virus appeared to subvert membranes in a unique manner. The proLC3 virus produced a large quantity of LC3-I which binds to phosphatidylethanolamine (PE), affording access to the autophagy pathway. The proLC3(G120A) protein cannot attach to PE, and instead binds to the ER-resident protein SEL1L, potentially providing an autophagy-independent source of membranes. Finally, the ATG4B(C74A) protein sequestered host cell LC3-I, causing accumulation of immature phagophores, and massive membrane rearrangement. Taken together, our data indicate that some RNA viruses can exploit a variety of different intracellular membranes, potentially maximizing their replication in each of the diverse cell types that they infect in vivo.


Assuntos
Autofagia , Infecções por Coxsackievirus/virologia , Enterovirus/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Cisteína Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Pâncreas/virologia , Fosfatidiletanolaminas/química , Proteínas/metabolismo , Vírus de RNA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
10.
J Infect Dis ; 211(1): 40-4, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035516

RESUMO

Human immunodeficiency virus (HIV) accesses the brain early in infection and can lead to neurocognitive disorders. The brain can also serve as a viral reservoir, but how virus is controlled in the brain is unknown. To examine this, CD8-depleting monoclonal antibody was injected into the cerebrospinal fluid of rhesus monkeys with chronic simian immunodeficiency virus (SIV) infection. This treatment led to the rapid increase of SIV in the brain. Virus in the brain is maintained by active suppression from the host immune system. This dynamic interaction can be manipulated in efforts to control and eradicate virus from the brain and other reservoirs.


Assuntos
Encéfalo/imunologia , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Monoclonais/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/líquido cefalorraquidiano
11.
J Immunol ; 193(4): 1873-85, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015828

RESUMO

In vitro studies have shown that naive CD8(+) T cells are unable to express most of their effector proteins until after at least one round of cell division has taken place. We have reassessed this issue in vivo and find that naive CD8(+) T cells mount Ag-specific responses within hours of infection, before proliferation has commenced. Newly activated naive Ag-specific CD8(+) T cells produce a rapid pulse of IFN-γ in vivo and begin to accumulate granzyme B and perforin. Later, in vivo cytolytic activity is detectable, coincident with the initiation of cell division. Despite the rapid development of these functional attributes, no antiviral effect was observed early during infection, even when the cells are present in numbers similar to those of virus-specific memory cells. The evolutionary reason for the pulse of IFN-γ synthesis by naive T cells is uncertain, but the lack of antiviral impact suggests that it may be regulatory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/imunologia , Divisão Celular/imunologia , Granzimas/biossíntese , Memória Imunológica/imunologia , Interferon gama/biossíntese , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Perforina/biossíntese , Proteínas com Domínio T/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Replicação Viral/imunologia
12.
J Virol ; 88(9): 5087-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574394

RESUMO

UNLABELLED: Acute coxsackievirus B3 (CVB3) infection is one of the most prevalent causes of acute myocarditis, a disease that frequently is identified only after the sudden death of apparently healthy individuals. CVB3 infects cardiomyocytes, but the infection is highly focal, even in the absence of a strong adaptive immune response, suggesting that virus spread within the heart may be tightly constrained by the innate immune system. Type I interferons (T1IFNs) are an obvious candidate, and T1IFN receptor (T1IFNR) knockout mice are highly susceptible to CVB3 infection, succumbing within a few days of challenge. Here, we investigated the role of T1IFNs in the heart using a mouse model in which the T1IFNR gene can be ablated in vivo, specifically in cardiomyocytes. We found that T1IFN signaling into cardiomyocytes contributed substantially to the suppression of viral replication and infectious virus yield in the heart; in the absence of such signaling, virus titers were markedly elevated by day 3 postinfection (p.i.) and remained high at day 12 p.i., a time point at which virus was absent from genetically intact littermates, suggesting that the T1IFN-unresponsive cardiomyocytes may act as a safe haven for the virus. Nevertheless, in these mice the myocardial infection remained highly focal, despite the cardiomyocytes' inability to respond to T1IFN, indicating that other factors, as yet unidentified, are sufficient to prevent the more widespread dissemination of the infection throughout the heart. The absence of T1IFN signaling into cardiomyocytes also was accompanied by a profound acceleration and exacerbation of myocarditis and by a significant increase in mortality. IMPORTANCE: Acute coxsackievirus B3 (CVB3) infection is one of the most common causes of acute myocarditis, a serious and sometimes fatal disease. To optimize treatment, it is vital that we identify the immune factors that limit virus spread in the heart and other organs. Type I interferons play a key role in controlling many virus infections, but it has been suggested that they may not directly impact CVB3 infection within the heart. Here, using a novel line of transgenic mice, we show that these cytokines signal directly into cardiomyocytes, limiting viral replication, myocarditis, and death.


Assuntos
Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/imunologia , Miocardite/imunologia , Miocardite/virologia , Miócitos Cardíacos/virologia , Receptor de Interferon alfa e beta/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miocardite/patologia , Miócitos Cardíacos/fisiologia , Receptor de Interferon alfa e beta/deficiência , Análise de Sobrevida
13.
J Immunol ; 191(8): 4211-22, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24026080

RESUMO

CD8(+) memory T cells are abundant and are activated in a near-synchronous manner by infection, thereby providing a unique opportunity to evaluate the coordinate functional and phenotypic changes that occur in vivo within hours of viral challenge. Using two disparate virus challenges of mice, we show that splenic CD8(+) memory T cells rapidly produced IFN-γ in vivo; however, within 18-24 h, IFN-γ synthesis was terminated and remained undetectable for ≥ 48 h. A similar on/off response was observed in CD8(+) memory T cells in the peritoneal cavity. Cessation of IFN-γ production in vivo occurred despite the continued presence of immunostimulatory viral Ag, indicating that the initial IFN-γ response had been actively downregulated and that the cells had been rendered refractory to subsequent in vivo Ag contact. Downregulation of IFN-γ synthesis was accompanied by the upregulation of inhibitory receptor expression on the T cells, and ex vivo analyses using synthetic peptides revealed a concurrent hierarchical loss of cytokine responsiveness (IL-2, then TNF, then IFN-γ) taking place during the first 24 h following Ag contact. Thus, within hours of virus challenge, CD8(+) memory T cells display the standard hallmarks of T cell exhaustion, a phenotype that previously was associated only with chronic diseases and that is generally viewed as a gradually developing and pathological change in T cell function. Our data suggest that, instead, the "exhaustion" phenotype is a rapid and normal physiological T cell response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Receptores Coestimuladores e Inibidores de Linfócitos T/biossíntese , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Regulação para Baixo , Interferon gama/biossíntese , Interleucina-2/biossíntese , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Poxviridae/imunologia , Baço/citologia , Baço/imunologia , Fatores de Necrose Tumoral/biossíntese , Regulação para Cima , Vaccinia virus/genética , Vaccinia virus/imunologia
14.
Autophagy ; 8(6): 973-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22705981

RESUMO

Autophagy plays a protective role during many viral and bacterial infections. Predictably, evolution has led to several viruses developing mechanisms by which to evade the inhibitory effects of the pathway. However, one family of viruses, the picornaviruses, has gone one step further, by actively exploiting autophagy. Using mice in which Atg5 has been conditionally deleted in pancreatic acinar cells, we have studied the outcome of infection by coxsackievirus B3 (CVB3), a member of the enterovirus genus and picornavirus family. Two key findings emerged: disruption of autophagy (1) dramatically compromised virus replication in vivo, and (2) significantly limited pancreatic disease.


Assuntos
Autofagia , Enterovirus/fisiologia , Animais , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , Humanos , Camundongos , Modelos Biológicos , Replicação Viral/fisiologia
15.
Virology ; 429(1): 74-90, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22551767

RESUMO

In vitro studies have shown that enteroviruses employ strategies that may impair the ability of DCs to trigger T cell immunity, but it is unclear how these viruses affect DCs in vivo. Here, we evaluate the effects of wild-type (wt) coxsackievirus B3 on DCs in vitro and in a murine model in vivo. Although CVB3 does not productively infect the vast majority of DCs, virus infection profoundly reduces splenic conventional DC numbers and diminishes their capacity to prime naïve CD8(+) T cells in vitro. In contrast to recombinant CVB3, highly pathogenic wt virus infection significantly diminishes the host's capacity to mount T cell responses, which is temporally associated with the loss of CD8α(+) DCs. Our findings demonstrate that enterovirus infection substantially alters the number, heterogeneity, and stimulatory capacity of DCs in vivo, and these dramatic immunomodulatory effects may weaken the host's capacity to mount antiviral T cell responses.


Assuntos
Infecções por Coxsackievirus/imunologia , Células Dendríticas/imunologia , Enterovirus Humano B/fisiologia , Animais , Infecções por Coxsackievirus/virologia , Células Dendríticas/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Cell Host Microbe ; 11(3): 298-305, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22423969

RESUMO

Autophagy protects against many infections by inducing the lysosomal-mediated degradation of invading pathogens. However, previous in vitro studies suggest that some enteroviruses not only evade these protective effects but also exploit autophagy to facilitate their replication. We generated Atg5(f/f)/Cre(+) mice, in which the essential autophagy gene Atg5 is specifically deleted in pancreatic acinar cells, and show that coxsackievirus B3 (CVB3) requires autophagy for optimal infection and pathogenesis. Compared to Cre(-) littermates, Atg5(f/f)/Cre(+) mice had an ∼2,000-fold lower CVB3 titer in the pancreas, and pancreatic pathology was greatly diminished. Both in vivo and in vitro, Atg5(f/f)/Cre(+) acinar cells had reduced intracellular viral RNA and proteins. Furthermore, intracellular structural elements induced upon CVB3 infection, such as compound membrane vesicles and highly geometric paracrystalline arrays, which may represent viral replication platforms, were infrequently observed in infected Atg5(f/f)/Cre(+) cells. Thus, CVB3-induced subversion of autophagy not only benefits the virus but also exacerbates pancreatic pathology.


Assuntos
Células Acinares/virologia , Autofagia , Infecções por Coxsackievirus/patologia , Enterovirus/fisiologia , Pâncreas/patologia , Replicação Viral , Células Acinares/patologia , Células Acinares/fisiologia , Animais , Proteína 5 Relacionada à Autofagia , Infecções por Coxsackievirus/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Pâncreas/metabolismo , Pâncreas/virologia , Transdução de Sinais
17.
Mol Neurodegener ; 6: 52, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21777416

RESUMO

BACKGROUND: In Parkinson's disease there is progressive loss of dopamine containing neurons in the substantia nigra pars compacta. The neuronal damage is not limited to the substantia nigra but progresses to other regions of brain, leading to loss of motor control as well as cognitive abnormalities. The purpose of this study was to examine causes of progressive damage in the caudate nucleus, which plays a major role in motor coordination and cognition, in experimental Parkinson's disease. RESULTS: Using chronic 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine treatment of rhesus monkeys to model Parkinson's disease, we found a upregulation of Cathepsin D, a lysosomal aspartic protease, in the caudate nucleus of treated monkeys. Immunofluorescence analysis of caudate nucleus brain tissue showed that the number of lysosomes increased concurrently with the increase in Cathepsin D in neurons. In vitro overexpression of Cathepsin D in a human neuroblastoma cell line led to a significant increase in the number of the lysosomes. Such expression also resulted in extralysosomal Cathepsin D and was accompanied by significant neuronal death associated with caspase activation. We examined apoptotic markers and found a strong correlation of Cathepsin D overexpression to apoptosis. CONCLUSIONS: Following damage to the substantia nigra resulting in experimental Parkinson's disease, we have identified pathological changes in the caudate nucleus, a likely site of changes leading to the progression of disease. Cathepsin D, implicated in pathogenic mechanisms in other disorders, was increased, and our in vitro studies revealed its overexpression leads to cellular damage and death. This work provides important clues to the progression of Parkinson's, and provides a new target for strategies to ameliorate the progression of this disease.

18.
J Virol ; 84(23): 12110-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861268

RESUMO

Autophagy can play an important part in protecting host cells during virus infection, and several viruses have developed strategies by which to evade or even exploit this homeostatic pathway. Tissue culture studies have shown that poliovirus, an enterovirus, modulates autophagy. Herein, we report on in vivo studies that evaluate the effects on autophagy of coxsackievirus B3 (CVB3). We show that in pancreatic acinar cells, CVB3 induces the formation of abundant small autophagy-like vesicles and permits amphisome formation. However, the virus markedly, albeit incompletely, limits the fusion of autophagosomes (and/or amphisomes) with lysosomes, and, perhaps as a result, very large autophagy-related structures are formed within infected cells; we term these structures megaphagosomes. Ultrastructural analyses confirmed that double-membraned autophagy-like vesicles were present in infected pancreatic tissue and that the megaphagosomes were related to the autophagy pathway; they also revealed a highly organized lattice, the individual components of which are of a size consistent with CVB RNA polymerase; we suggest that this may represent a coxsackievirus replication complex. Thus, these in vivo studies demonstrate that CVB3 infection dramatically modifies autophagy in infected pancreatic acinar cells.


Assuntos
Autofagia/fisiologia , Infecções por Coxsackievirus/fisiopatologia , Enterovirus Humano B , Pâncreas/citologia , Fagossomos/virologia , Análise de Variância , Animais , Western Blotting , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Pâncreas/virologia , Fagossomos/ultraestrutura
19.
Autophagy ; 6(6): 702-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534972

RESUMO

Disruption of autophagy--a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes--can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response.


Assuntos
Autofagia/fisiologia , Jejum/fisiologia , Neurônios/citologia , Animais , Restrição Calórica , Cerebelo/citologia , Cerebelo/ultraestrutura , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/ultraestrutura , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
20.
PLoS Pathog ; 5(10): e1000618, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834548

RESUMO

Many viruses encode proteins whose major function is to evade or disable the host T cell response. Nevertheless, most viruses are readily detected by host T cells, and induce relatively strong T cell responses. Herein, we employ transgenic CD4(+) and CD8(+) T cells as sensors to evaluate in vitro and in vivo antigen presentation by coxsackievirus B3 (CVB3), and we show that this virus almost completely inhibits antigen presentation via the MHC class I pathway, thereby evading CD8(+) T cell immunity. In contrast, the presentation of CVB3-encoded MHC class II epitopes is relatively unencumbered, and CVB3 induces in vivo CD4(+) T cell responses that are, by several criteria, phenotypically normal. The cells display an effector phenotype and mature into multi-functional CVB3-specific memory CD4(+) T cells that expand dramatically following challenge infection and rapidly differentiate into secondary effector cells capable of secreting multiple cytokines. Our findings have implications for the efficiency of antigen cross-presentation during coxsackievirus infection.


Assuntos
Apresentação de Antígeno/imunologia , Enterovirus Humano B/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Epitopos/imunologia , Células HeLa , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA