Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Med Phys ; 51(5): 3604-3618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558460

RESUMO

BACKGROUND: Intensity modulated brachytherapy based on partially shielded intracavitary and interstitial applicators is possible with a cost-effective 169Yb production method. 169Yb is a traditionally expensive isotope suitable for this purpose, with an average γ-ray energy of 93 keV. Re-activating a single 169Yb source multiple times in a nuclear reactor between clinical uses was shown to theoretically reduce cost by approximately 75% relative to conventional single-activation sources. With re-activation, substantial spatiotemporal variation in isotopic source composition is expected between activations via 168Yb burnup and 169Yb decay, resulting in time dependent neutron transmission, precursor usage, and reactor time needed per re-activation. PURPOSE: To introduce a generalized model of radioactive source production that accounts for spatiotemporal variation in isotopic source composition to improve the efficiency estimate of the 169Yb production process, with and without re-activation. METHODS AND MATERIALS: A time-dependent thermal neutron transport, isotope transmutation, and decay model was developed. Thermal neutron flux within partitioned sub-volumes of a cylindrical active source was calculated by raytracing through the spatiotemporal dependent isotopic composition throughout the source, accounting for thermal neutron attenuation along each ray. The model was benchmarked, generalized, and applied to a variety of active source dimensions with radii ranging from 0.4 to 1.0 mm, lengths from 2.5 to 10.5 mm, and volumes from 0.31 to 7.85 mm3, at thermal neutron fluxes from 1 × 1014 to 1 × 1015 n cm-2 s-1. The 168Yb-Yb2O3 density was 8.5 g cm-3 with 82% 168Yb-enrichment. As an example, a reference re-activatable 169Yb active source (RRS) constructed of 82%-enriched 168Yb-Yb2O3 precursor was modeled, with 0.6 mm diameter, 10.5 mm length, 3 mm3 volume, 8.5 g cm-3 density, and a thermal neutron activation flux of 4 × 1014 neutrons cm-2 s-1. RESULTS: The average clinical 169Yb activity for a 0.99 versus 0.31 mm3 source dropped from 20.1 to 7.5 Ci for a 4 × 1014 n cm-2 s-1 activation flux and from 20.9 to 8.7 Ci for a 1 × 1015 n cm-2 s-1 activation flux. For thermal neutron fluxes ≥2 × 1014 n cm-2 s-1, total precursor and reactor time per clinic-year were maximized at a source volume of 0.99 mm3 and reached a near minimum at 3 mm3. When the spatiotemporal isotopic composition effect was accounted for, average thermal neutron transmission increased over RRS lifetime from 23.6% to 55.9%. A 28% reduction (42.5 days to 30.6 days) in the reactor time needed per clinic-year for the RRS is predicted relative to a model that does not account for spatiotemporal isotopic composition effects. CONCLUSIONS: Accounting for spatiotemporal isotopic composition effects within the RRS results in a 28% reduction in the reactor time per clinic-year relative to the case in which such changes are not accounted for. Smaller volume sources had a disadvantage in that average clinical 169Yb activity decreased substantially below 20 Ci for source volumes under 1 mm3. Increasing source volume above 3 mm3 adds little value in precursor and reactor time savings and has a geometric disadvantage.


Assuntos
Braquiterapia , Radioisótopos , Itérbio/química , Nêutrons , Modelos Teóricos , Fatores de Tempo
2.
Clin Cancer Res ; 30(2): 283-293, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37773633

RESUMO

PURPOSE: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS: Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS: P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Biomarcadores , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Temozolomida/uso terapêutico
3.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832529

RESUMO

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radiometria
4.
Med Phys ; 50(10): 6469-6478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37643427

RESUMO

BACKGROUND: Multiple approaches are under development for delivering temporary intensity modulated brachytherapy (IMBT) using partially shielded applicators wherein the delivered dose distributions are sensitive to spatial uncertainties in both the applicator position and shield orientation, rather than only applicator position as with conventional high-dose-rate brachytherapy (HDR-BT). Sensitivity analyses to spatial uncertainties have been reported as components of publications on these emerging technologies, however, a generalized framework for the rigorous determination of the spatial uncertainty tolerances of dose-volume parameters is needed. PURPOSE: To derive and present the population percentile allowance (PPA) method, a generalized mathematical and statistical framework to evaluate the tolerance of temporary IMBT approaches to spatial uncertainties in applicator position and shield orientation. METHODS: A mathematical formalism describing geometric applicator position and shield orientation shifts was derived that supports straight and curved applicators and applies to serial and helical rotating shield brachytherapy (RSBT) and direction modulated brachytherapy (DMBT). The PPA method entails defining the percentage of a patient population receiving a given therapy that is, allowed to receive dose-volume errors in the target volume and specified organs at risk of a defined percentage or less, then determining what combinations of applicator position and shield orientation systematic errors would be expected to produce that outcome in the population. The PPA method was applied to the use case of multi-shield helical 169 Yb-based RSBT for cervical cancer, with 45° and 180° shield emission angles. A total of 37 cervical cancer patients were considered in the population, with average (± 1 standard deviation) HR-CTV volumes of 79 cm3  ± 37 cm3 and optimized baseline treatment plans (no spatial uncertainties applied) created for each patient to meet dose-volume requirements of 85 GyEQD2 (equivalent uniform dose in 2 Gy fraction), with D2cc tolerance doses of 90 GyEQD2 , 75 GyEQD2 , and 75 GyEQD2 for bladder, rectum, and sigmoid colon, respectively. RESULTS: For the PPA requirement that 90% of cervical cancer patients receiving multi-shield helical RSBT could have a maximum dose-volume uncertainty of 10% for high-risk clinical target volume (HR-CTV) D90 (minimum dose to hottest 90%) and bladder, rectum, and sigmoid colon D2cc (minimum dose to hottest 2 cm3 ), the tolerance systematic applicator position and shield orientation uncertainties were approximately ± 1.0 mm and ± 4.25°, respectively. For ± 1.5 mm and ± 5° systematic applicator position and shield orientation tolerances, 90% of the patients considered would have a maximum dose-volume uncertainty of 12.8% or less. CONCLUSION: The PPA method was formalized to determine the temporary IMBT spatial uncertainty tolerances that would be expected to result in an allowed percentage of a population of patients receiving relative dose-volume errors above a defined percentage. Multi-shield, helical 169 Yb-based RSBT for cervical cancer was evaluated and tolerances determined, which, if applied on each treatment fraction, would represent an extreme situation. The PPA method is applicable to a variety of temporary IMBT approaches and can be used to rigorously determine the design parameters for the delivery systems such as mechanical driver motor accuracy, shield angle backlash, applicator rotation, and applicator fixation stability.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Feminino , Humanos , Braquiterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Dosagem Radioterapêutica , Rotação , Reto , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Med Phys ; 50(11): 7263-7280, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37370239

RESUMO

BACKGROUND: The Dynamic Collimation System (DCS) has been shown to produce superior treatment plans to uncollimated pencil beam scanning (PBS) proton therapy using an in-house treatment planning system (TPS) designed for research. Clinical implementation of the DCS requires the development and benchmarking of a rigorous dose calculation algorithm that accounts for pencil beam trimming, performs monitor unit calculations to produce deliverable plans at all beam energies, and is ideally implemented with a commercially available TPS. PURPOSE: To present an analytical Pencil bEam TRimming Algorithm (PETRA) for the DCS, with and without its range shifter, implemented in the Astroid TPS (.decimal, Sanford, Florida, USA). MATERIALS: PETRA was derived by generalizing an existing pencil beam dose calculation model to account for the DCS-specific effects of lateral penumbra blurring due to the nickel trimmers in two different planes, integral depth dose variation due to the trimming process, and the presence and absence of the range shifter. Tuning parameters were introduced to enable agreement between PETRA and a measurement-validated Dynamic Collimation Monte Carlo (DCMC) model of the Miami Cancer Institute's IBA Proteus Plus system equipped with the DCS. Trimmer position, spot position, beam energy, and the presence or absence of a range shifter were all used as variables for the characterization of the model. The model was calibrated for pencil beam monitor unit calculations using procedures specified by International Atomic Energy Agency Technical Report Series 398 (IAEA TRS-398). RESULTS: The integral depth dose curves (IDDs) for energies between 70 MeV and 160 MeV among all simulated trimmer combinations, with and without the ranger shifter, agreed between PETRA and DCMC at the 1%/1 mm 1-D gamma criteria for 99.99% of points. For lateral dose profiles, the median 2-D gamma pass rate for all profiles at 1.5%/1.5 mm was 99.99% at the water phantom surface, plateau, and Bragg peak depths without the range shifter and at the surface and Bragg peak depths with the range shifter. The minimum 1.5%/1.5 mm gamma pass rates for the 2-D profiles at the water phantom surface without and with the range shifter were 98.02% and 97.91%, respectively, and, at the Bragg peak, the minimum pass rates were 97.80% and 97.5%, respectively. CONCLUSION: The PETRA model for DCS dose calculations was successfully defined and benchmarked for use in a commercially available TPS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Algoritmos , Imagens de Fantasmas , Método de Monte Carlo , Água
6.
Phys Med Biol ; 68(5)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36706460

RESUMO

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Método de Monte Carlo
7.
Sci Rep ; 12(1): 21731, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526670

RESUMO

The advent of energy-specific collimation in pencil beam scanning (PBS) proton therapy has led to an improved lateral dose conformity for a variety of treatment sites, resulting in better healthy tissue sparing. Arc PBS delivery has also been proposed to enhance high-dose conformity about the intended target, reduce skin toxicity, and improve plan robustness. The goal of this work was to determine if the combination of proton arc and energy-specific collimation can generate better dose distributions as a logical next step to maximize the dosimetric advantages of proton therapy. Plans were optimized using a novel DyNamically collimated proton Arc (DNA) genetic optimization algorithm that was designed specifically for the application of proton arc therapy. A treatment planning comparison study was performed by generating an uncollimated two-field intensity modulated proton therapy and partial arc treatments and then replanning these treatments using energy-specific collimation as delivered by a dynamic collimation system, which is a novel collimation technology for PBS. As such, we refer to this novel treatment paradigm as Dynamically Collimated Proton Arc Therapy (DC-PAT). Arc deliveries achieved a superior target conformity and improved organ at risk (OAR) sparing relative to their two-field counterparts at the cost of an increase to the low-dose, high-volume region of the healthy brain. The incorporation of DC-PAT using the DNA optimizer was shown to further improve the tumor dose conformity. When compared to the uncollimated proton arc treatments, the mean dose to the 10mm of surrounding healthy tissue was reduced by 11.4% with the addition of collimation without meaningfully affecting the maximum skin dose (less than 1% change) relative to a multi-field treatment. In this case study, DC-PAT could better spare specific OARs while maintaining better target coverage compared to uncollimated proton arc treatments. While this work presents a proof-of-concept integration of two emerging technologies, the results are promising and suggest that the addition of these two techniques can lead to superior treatment plans warranting further development.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Prótons , Algoritmos , Radioterapia de Intensidade Modulada/métodos
8.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35130520

RESUMO

Purpose. The Dynamic Collimation System (DCS) is an energy layer-specific collimation device designed to reduce the lateral penumbra in pencil beam scanning proton therapy. The DCS consists of two pairs of nickel trimmers that rapidly and independently move and rotate to intercept the scanning proton beam and an integrated range shifter to treat targets less than 4 cm deep. This work examines the validity of a single aperture approximation to model the DCS, a commonly used approximation in commercial treatment planning systems, as well as higher-order aperture-based approximations for modeling DCS-collimated dose distributions.Methods. An experimentally validated TOPAS/Geant4-based Monte Carlo model of the DCS integrated with a beam model of the IBA pencil beam scanning dedicated nozzle was used to simulate DCS- and aperture-collimated 100 MeV beamlets and composite treatment plans. The DCS was represented by three different aperture approximations: a single aperture placed halfway between the upper and lower trimmer planes, two apertures located at the upper and lower trimmer planes, and four apertures, located at both the upstream and downstream faces of each pair of trimmers. Line profiles and three-dimensional regions of interest were used to evaluate the validity and limitations of the aperture approximations investigated.Results. For pencil beams without a range shifter, minimal differences were observed between the DCS and single aperture approximation. For range shifted beamlets, the single aperture approximation yielded wider penumbra widths (up to 18%) in the X-direction and sharper widths (up to 9.4%) in the Y-direction. For the example treatment plan, the root-mean-square errors (RMSEs) in an overall three-dimensional region of interest were 1.7%, 1.3%, and 1.7% for the single aperture, two aperture, and four aperture models, respectively. If the region of interest only encompasses the lateral edges outside of the target, the resulting RMSEs were 1.7%, 1.1%, and 0.5% single aperture, two aperture, and four aperture models, respectively.Conclusions. Monte Carlo simulations of the DCS demonstrated that a single aperture approximation is sufficient for modeling pristine fields at the Bragg depth while range shifted fields require a higher-order aperture approximation. For the treatment plan considered, the double aperture model performed the best overall, however, the four-aperture model most accurately modeled the lateral field edges at the expense of increased dose differences proximal to and within the target.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
9.
J Appl Clin Med Phys ; 22(9): 189-214, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34312999

RESUMO

This work presents a comprehensive commissioning and workflow development process of a real-time, ultrasound (US) image-guided treatment planning system (TPS), a stepper and a US unit. To adequately benchmark the system, commissioning tasks were separated into (1) US imaging, (2) stepper mechanical, and (3) treatment planning aspects. Quality assurance US imaging measurements were performed following the AAPM TG-128 and GEC-ESTRO recommendations and consisted of benchmarking the spatial resolution, accuracy, and low-contrast detectability. Mechanical tests were first used to benchmark the electronic encoders within the stepper and were later expanded to evaluate the needle free length calculation accuracy. Needle reconstruction accuracy was rigorously evaluated at the treatment planning level. The calibration length of each probe was redundantly checked between the calculated and measured needle free length, which was found to be within 1 mm for a variety of scenarios. Needle placement relative to a reference fiducial and coincidence of imaging coordinate origins were verified to within 1 mm in both sagittal and transverse imaging planes. The source strength was also calibrated within the interstitial needle and was found to be 1.14% lower than when measured in a plastic needle. Dose calculations in the TPS and secondary dose calculation software were benchmarked against manual TG-43 calculations. Calculations among the three calculation methods agreed within 1% for all calculated points. Source positioning and dummy coincidence was tested following the recommendations of the TG-40 report. Finally, the development of the clinical workflow, checklists, and planning objectives are discussed and included within this report. The commissioning of real-time, US-guided HDR prostate systems requires careful consideration among several facets including the image quality, dosimetric, and mechanical accuracy. The TPS relies on each of these components to develop and administer a treatment plan, and as such, should be carefully examined.


Assuntos
Braquiterapia , Humanos , Masculino , Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Ultrassonografia , Ultrassonografia de Intervenção
10.
Med Phys ; 48(6): 3172-3185, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740253

RESUMO

PURPOSE: The aim of this work was to develop and experimentally validate a Dynamic Collimation Monte Carlo (DCMC) simulation package specifically designed for the simulation of collimators in pencil beam scanning proton therapy (PBS-PT). The DCMC package was developed using the TOPAS Monte Carlo platform and consists of a generalized PBS source model and collimator component extensions. METHODS: A divergent point-source model of the IBA dedicated nozzle (DN) at the Miami Cancer Institute (MCI) was created and validated against on-axis commissioning measurements taken at MCI. The beamline optics were mathematically incorporated into the source to model beamlet deflections in the X and Y directions at the respective magnet planes. Off-axis measurements taken at multiple planes in air were used to validate both the off-axis spot size and divergence of the source model. The DCS trimmers were modeled and incorporated as TOPAS geometry extensions that linearly translate and rotate about the bending magnets. To validate the collimator model, a series of integral depth dose (IDD) and lateral profile measurements were acquired at MCI and used to benchmark the DCMC performance for modeling both pristine and range shifted beamlets. The water equivalent thickness (WET) of the range shifter was determined by quantifying the shift in the depth of the 80% dose point distal to the Bragg peak between the range shifted and pristine uncollimated beams. RESULTS: A source model of the IBA DN system was successfully commissioned against on- and off-axis IDD and lateral profile measurements performed at MCI. The divergence of the source model was matched through an optimization of the source-to-axis distance and comparison against in-air spot profiles. The DCS model was then benchmarked against collimated IDD and in-air and in-phantom lateral profile measurements. Gamma analysis was used to evaluate the agreement between measured and simulated lateral profiles and IDDs with 1%/1 mm criteria and a 1% dose threshold. For the pristine collimated beams, the average 1%/1 mm gamma pass rates across all collimator configurations investigated were 99.8% for IDDs and 97.6% and 95.2% for in-air and in-phantom lateral profiles. All range shifted collimated IDDs passed at 100% while in-air and in-phantom lateral profiles had average pass rates of 99.1% and 99.8%, respectively. The measured and simulated WET of the polyethylene range shifter was determined to be 40.9 and 41.0 mm, respectively. CONCLUSIONS: We have developed a TOPAS-based Monte Carlo package for modeling collimators in PBS-PT. This package was then commissioned to model the IBA DN system and DCS located at MCI using both uncollimated and collimated measurements. Validation results demonstrate that the DCMC package can be used to accurately model other aspects of a DCS implementation via simulation.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
Redox Biol ; 38: 101804, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260088

RESUMO

Pharmacological ascorbate (P-AscH-) combined with standard of care (SOC) radiation and temozolomide is being evaluated in a phase 2 clinical trial (NCT02344355) in the treatment of glioblastoma (GBM). Previously published data demonstrated that paramagnetic iron (Fe3+) catalyzes ascorbate's oxidation to form diamagnetic iron (Fe2+). Because paramagnetic Fe3+ may influence relaxation times observed in MR imaging, quantitative MR imaging of P-AscH--induced changes in redox-active Fe was assessed as a biomarker for therapy response. Gel phantoms containing either Fe3+ or Fe2+ were imaged with T2* and quantitative susceptibility mapping (QSM). Fifteen subjects receiving P-AscH- plus SOC underwent T2* and QSM imaging four weeks into treatment. Subjects were scanned: pre-P-AscH- infusion, post-P-AscH- infusion, and post-radiation (3-4 h between scans). Changes in T2* and QSM relaxation times in tumor and normal tissue were calculated and compared to changes in Fe3+ and Fe2+ gel phantoms. A GBM mouse model was used to study the relationship between the imaging findings and the labile iron pool. Phantoms containing Fe3+ demonstrated detectable changes in T2* and QSM relaxation times relative to Fe2+ phantoms. Compared to pre-P-AscH-, GBM T2* and QSM imaging were significantly changed post-P-AscH- infusion consistent with conversion of Fe3+ to Fe2+. No significant changes in T2* or QSM were observed in normal brain tissue. There was moderate concordance between T2* and QSM changes in both progression free survival and overall survival. The GBM mouse model showed similar results with P-AscH- inducing greater changes in tumor labile iron pools compared to the normal tissue. CONCLUSIONS: T2* and QSM MR-imaging responses are consistent with P-AscH- reducing Fe3+ to Fe2+, selectively in GBM tumor volumes and represent a potential biomarker of response. This study is the first application using MR imaging in humans to measure P-AscH--induced changes in redox-active iron.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo , Oxirredução
12.
Radiat Res ; 195(3): 230-234, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347596

RESUMO

MR-linac technology enhances the precision of therapeutic radiation by clarifying the tumor-normal tissue interface and provides the potential for adaptive treatment planning. Accurate delineation of tumors on diagnostic magnetic resonance imaging (MRI) frequently requires gadolinium-based contrast agents (GBCAs). Despite generally being considered safe, previous literature suggests that GBCAs are capable of contrast-induced acute kidney injury (AKI). It is unclear if the risk for AKI is enhanced when GBCAs are administered concurrently with ionizing radiotherapy. During irradiation, gadolinium may be liberated from its chelator which may induce AKI. The goal of this work was to determine if radiation combined with GBCAs increased the incidence of AKI. Using a preclinical MRI-guided irradiation system, where MRI acquisitions and radiation delivery are performed in rapid succession, tumor-bearing mice with normal kidney function were injected with GBCA and treated with 2, 8 or 18 Gy irradiation. Renal function was assessed on days three and seven postirradiation to assess for AKI. No clinically relevant changes in blood urea nitrogen and creatinine were observed in any combination of GBCA and radiation dose. From these data, we conclude that GBCA in combination with radiation does not increase the risk for AKI in mice. Additional investigation of multiple doses of GBCA administered concurrently with irradiation is warranted to evaluate the risk of chronic kidney injury.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Meios de Contraste/farmacologia , Compostos Organometálicos/farmacologia , Radiação Ionizante , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos da radiação , Meios de Contraste/efeitos adversos , Modelos Animais de Doenças , Gadolínio/efeitos adversos , Gadolínio/farmacologia , Humanos , Rim/diagnóstico por imagem , Rim/efeitos dos fármacos , Rim/patologia , Rim/efeitos da radiação , Imageamento por Ressonância Magnética , Camundongos , Compostos Organometálicos/efeitos adversos , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia Guiada por Imagem/métodos
13.
J Appl Clin Med Phys ; 21(12): 246-252, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33207030

RESUMO

PURPOSE: To determine if the gamma knife icon (GKI) can provide superior stereotactic radiotherapy (SRT) dose distributions for appropriately selected meningioma and post-resection brain tumor bed treatments to volumetric modulated arc therapy (VMAT). MATERIALS AND METHODS: Appropriately selected targets were not proximal to great vessels, did not have sensitive soft tissue including organs-at-risk (OARs) within the planning target volume (PTV), and did not have concave tumors containing excessive normal brain tissue. Four of fourteen candidate meningioma patients and six of six candidate patients with brain tumor cavities were considered for this treatment planning comparison study. PTVs were generated for GKI and VMAT by adding 1 mm and 3 mm margins, respectively, to the GTVs. Identical PTV V100% -values were obtained for the GKI and VMAT plans for each patient. Meningioma and tumor bed prescription doses were 52.7-54.0 in 1.7-1.8 Gy fractions and 25 Gy in 5 Gy fractions, respectively. GKI dose rate was 3.735 Gy/min for 16 mm collimators. RESULTS: PTV radical dose homogeneity index was 3.03 ± 0.35 for GKI and 1.27 ± 0.19 for VMAT. Normal brain D1% , D5% , and D10% were lower for GKI than VMAT by 45.8 ± 10.9%, 38.9 ± 11.5%, and 35.4 ± 16.5% respectively. All OARs considered received lower maximum doses for GKI than VMAT. GKI and VMAT treatment times for meningioma plans were 12.1 ± 4.13 min and 6.2 ± 0.32 min, respectively, and, for tumor cavities, were 18.1 ± 5.1 min and 11.0 ± 0.56 min, respectively. CONCLUSIONS: Appropriately selected meningioma and brain tumor bed patients may benefit from GKI-based SRT due to the decreased normal brain and OAR doses relative to VMAT enabled by smaller margins. Care must be taken in meningioma patient selection for SRT with the GKI, even if they are clinically appropriate for VMAT.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Radioterapia de Intensidade Modulada , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirurgia , Meningioma/radioterapia , Meningioma/cirurgia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
14.
Med Phys ; 47(12): 6430-6439, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33051866

RESUMO

PURPOSE: To present a system for the treatment of prostate cancer in a single-fraction regimen using 169 Yb-based rotating shield brachytherapy (RSBT) with a single-catheter robotic delivery system. The proposed system is innovative because it can deliver RSBT through multiple implanted needles independently, in serial, using flexible catheters, with no inter-needle shielding effects and without the need to rotate multiple shielded catheters inside the needles simultaneously, resulting in a simple, mechanically robust, delivery approach. RSBT was compared to conventional 192 Ir-based high-dose-rate brachytherapy (HDR-BT) in a treatment planning study with dose escalation and urethral sparing goals, representing single-fraction brachytherapy monotherapy and brachytherapy as a boost to external beam radiotherapy, respectively. A prototype mechanical delivery system was constructed and quantitatively evaluated as a proof of concept. METHODS: Treatment plans for twenty-six patients with single fraction prescriptions of 20.5 and 15 Gy, were created for dose escalation and urethral sparing, respectively. The RSBT and HDR-BT delivery systems were modeled with one partially shielded 999 GBq (27 Ci) 169 Yb source and one 370 GBq (10 Ci) 192 Ir source, respectively. A prototype angular drive system for helical source delivery was constructed. Mechanical accuracy measurements of source translational position and angular orientation in a simulated treatment delivery setup were obtained using the prototype system. RESULTS: For dose escalation, with equivalent urethra D10% , PTV D90% for RSBT vs HDR-BT increased from 22.6 ± 0.0 Gy (average ± standard deviation) to 29.3 ± 0.9 Gy, or 29.9 % ± 3.0%, with treatment times of 51.4 ± 6.1 min for RSBT and 15.8 ± 2.3 min for 10 Ci 192 Ir-based HDR-BT. For urethra sparing, with equivalent PTV D90 % , urethra D10% for RSBT vs HDR-BT decreased for RSBT vs HDR-BT from 15.6 ± 0.4 Gy to 12.0 ± 0.4 Gy, or 23.1% ± 3.5%, with treatment times of 30.0 ± 3.7 min for RSBT and 12.3 ± 1.8 min for HDR-BT. Differences between measured vs predicted rotating catheter positions (corresponding to source position) were within 0.18 mm ± 0.12 mm longitudinally and 0.07° ± 0.78°. CONCLUSION: 169 Yb-based RSBT can increase PTV D90% or decrease urethral D10% relative to HDR-BT with treatment times of less than 1 h using a single-source robotic delivery system with treatment delivered in a single fraction. The prototype helical delivery system was able to demonstrate adequate mechanical accuracy.


Assuntos
Braquiterapia , Neoplasias da Próstata , Proteção Radiológica , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
15.
Med Phys ; 47(7): 2725-2734, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32170750

RESUMO

PURPOSE: When designing a collimation system for pencil beam spot scanning proton therapy, a decision must be made whether or not to rotate, or focus, the collimator to match beamlet deflection as a function of off-axis distance. If the collimator is not focused, the beamlet shape and fluence will vary as a function of off-axis distance due to partial transmission through the collimator. In this work, we quantify the magnitude of these effects and propose a focused dynamic collimation system (DCS) for use in proton therapy spot scanning. METHODS: This study was done in silico using a model of the Miami Cancer Institute's (MCI) IBA Proteus Plus system created in Geant4-based TOPAS. The DCS utilizes rectangular nickel trimmers mounted on rotating sliders that move in synchrony with the pencil beam to provide focused collimation at the edge of the target. Using a simplified setup of the DCS, simulations were performed at various off-axis locations corresponding to beam deflection angles ranging from 0° to 2.5°. At each off-axis location, focused (trimmer rotated) and unfocused (trimmer not rotated) simulations were performed. In all simulations, a 4 cm water equivalent thickness range shifter was placed upstream of the collimator, and a voxelized water phantom that scored dose was placed downstream, each with 4 cm airgaps. RESULTS: Increasing the beam deflection angle for an unfocused trimmer caused the collimated edge of the beamlet profile to shift 0.08-0.61 mm from the baseline 0° simulation. There was also an increase in low-dose regions on the collimated edge ranging from 14.6% to 192.4%. Lastly, the maximum dose, D max , was 0-5% higher for the unfocused simulations. With a focused trimmer design, the profile shift and dose increases were all eliminated. CONCLUSIONS: We have shown that focusing a collimator in spot scanning proton therapy reduces dose at the collimated edge compared to conventional, unfocused collimation devices and presented a simple, mechanical design for achieving focusing for a range of source-to-collimator distances.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
16.
Med Phys ; 47(5): 2061-2071, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32073669

RESUMO

PURPOSE: To assess the capability of an intracavitary 169 Yb-based helical multishield rotating shield brachytherapy (RSBT) delivery system to treat cervical cancer. The proposed RSBT delivery system contains a pair of 1.25 mm thick platinum partial shields with 45° and 180° emission angles, which travel in a helical pattern within the applicator. METHODS: A helically threaded tandem applicator with a 45° tandem curvature containing a helically threaded catheter was designed. A 0.6 mm diameter 169 Yb source with a length of 10.5 mm was simulated. A 37-patient treatment planning study, based on Monte Carlo dose calculations using MCNP5, was conducted with high-risk clinical target volumes (HR-CTVs) of 41.2-192.8 cm3 (average ± standard deviation of 79.9 ± 35.8 cm3 ). All patients were assumed to receive 25 fractions of 1.8 Gy of external beam radiation therapy (EBRT) before receiving 5 fractions of high-dose-rate brachytherapy (HDR-BT). For each patient, 192 Ir-based intracavitary (IC) HDR-BT, 192 Ir-based intracavitary/interstitial (IC/IS) HDR-BT using a hybrid applicator with eight IS needles, and 169 Yb-based RSBT plans were generated. RESULTS: For the IC, IC/IS, and RSBT treatment plans, 38%, 84%, and 86% of the plans, respectively, met the planning goal of an HR-CTV D90 (minimum dose to hottest 90%) of 85 GyEQD2 (α/ß = 10 Gy). Median (25th percentile, 75th percentile) treatment times for IC, IC/IS, and RSBT were 11.71 (6.62, 15.40) min, 68.00 (45.02, 80.02) min, and 25.30 (13.87, 35.39) min, respectively. 192 Ir activities ranging from 159.1-370 GBq (4.3-10 Ci) and 169 Yb activities ranging from 429.2-999 GBq (11.6-27 Ci) were used, which correspond to the same clinical ranges of dose rates at 1 cm off-source-axis in water. Extra needle insertion and planning time beyond that needed for intracavitary-only approaches was accounted for in the IC/IS treatment time calculations. CONCLUSION: 169 Yb-based RSBT for cervical cancer met the HR-CTV D90 goal of 85 Gy in a greater percentage of the patients considered than IC/IS (86% vs 84%, respectively) and can reduce overall treatment time relative to IC/IS. 169 Yb-based RSBT could be used to replace IC/IS in instances where IC/IS treatment is not available, especially in instances when HR-CTV volumes are ≥30 cm3 .


Assuntos
Braquiterapia/instrumentação , Proteção Radiológica/instrumentação , Radioisótopos/uso terapêutico , Rotação , Neoplasias do Colo do Útero/radioterapia , Itérbio/uso terapêutico , Feminino , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
17.
Phys Med Biol ; 64(20): 205025, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31484170

RESUMO

The dynamic collimation system (DCS) can be combined with pencil beam scanning proton therapy to deliver highly conformal treatment plans with unique collimation at each energy layer. This energy layer-specific collimation is accomplished through the synchronized motion of four trimmer blades that intercept the proton beam near the target boundary in the beam's eye view. However, the corresponding treatment deliveries come at the cost of additional treatment time since the translational speed of the trimmer is slower than the scanning speed of the proton pencil beam. In an attempt to minimize the additional trimmer sequencing time of each field while still maintaining a high degree of conformity, a novel process utilizing ant colony optimization (ACO) methods was created to determine the most efficient route of trimmer sequencing and beamlet scanning patterns for a collective set of collimated proton beamlets. The ACO process was integrated within an in-house treatment planning system optimizer to determine the beam scanning and DCS trimmer sequencing patterns and compared against an analytical approximation of the trimmer sequencing time should a contour-like scanning approach be assumed instead. Due to the stochastic nature of ACO, parameters where determined so that they could ensure good convergence and an efficient optimization of trimmer sequencing that was faster than an analytical contour-like trimmer sequencing. The optimization process was tested using a set of three intracranial treatment plans which were planned using a custom research treatment planning system and were successfully optimized to reduce the additional trimmer sequencing time to approximately 60 s per treatment field while maintaining a high degree of target conformity. Thus, the novel use of ACO techniques within a treatment planning algorithm has been demonstrated to effectively determine collimation sequencing patterns for a DCS in order to minimize the additional treatment time required for trimmer movement during treatment.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica , Tempo
18.
Med Phys ; 46(11): 5284-5293, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31461537

RESUMO

PURPOSE: Rapid adoption of targeted radionuclide therapy as an oncologic intervention has motivated the development of patient-specific voxel-wise approaches to radiation dosimetry. These approaches often rely on pretabulated dose point kernels for convolution-based calculations; however, these dose kernels are sparse in literature and often have suboptimal characteristics. The purpose of this work was to generate an extensive library of dose point kernels with sufficient size and resolution for general clinical application of voxel-wise dosimetry. METHODS: Nuclear data were acquired for 2174 radionuclides from the National Nuclear Data Center (Brookhaven National Laboratory, accessed March 2018). Based on these data, isotropic point sources of radioactivity in water were simulated using Monte Carlo N-Particle transport v6.2 (MCNP6.2, Los Alamos National Laboratory). Simulations were separated by emission type for each radionuclide - photons (γ-rays, x rays), beta particles (positrons, electrons); and discrete electrons (conversion electrons, Auger electrons, Coster-Kronig electrons). Dose was tallied in concentric spherical shells about the point source using an energy deposition pulse-height tally (MCNP *F8 tally). Bins were spaced every 0.1 mm until a radius of 10 cm, and every 1 mm until a radius of 2 m. Positron emissions where treated as electrons for transport, with annihilation photons generated at the origin within the photon simulation. Alpha particle emissions were not simulated since their energy is deposited within ~0.2 mm of the source. Neutron and spallation effects were not considered. A subset of the resultant dose point kernels (11 C, 18 F, 32 P, 52g Mn, 64 Cu, 67 Ga, 89 Sr, 89 Zr, 90 Y, 99m Tc, 111 In, 117m Sn, 123 I, 124 I, 125 I, 131 I, 153 Sm, 177 Lu, 186 Re, 188 Re, 211 As, 212 Pb, 213 Bi, 223 Ra, and 225 Ac) were evaluated for accuracy based on conservation of energy, comparison to kernels in the literature, and statistical precision. RESULTS: Among dose point kernels that were manually reviewed, good agreement with previously published dose point kernels was observed. Energy within the kernels was found to be conserved to within 1% of the value expected from nuclear data, suggesting that a radius of 2 m was sufficient to capture the almost all of the energy released during decay for all isotopes considered. Local dosimetric uncertainty, evaluated at the radius of 99% energy deposition, was found to be less than 9% for all radioisotopes evaluated. Rebinning data more coarsely by a factor of 10, similar to what would be done for a clinical dose calculation, results in all evaluated kernels having a relative error of less than 1.1% at R50% , 1.5% at R90% , and 2.7% at R99% (the radius corresponding to 50%, 90%, and 99% of total energy deposition, respectively). The kernels produced in this work have been made freely available (https://zenodo.org/record/2564036). CONCLUSIONS: An extensive library of high-resolution radial dose kernels was generated and validated against published data. In addition to enabling patient-specific voxel-wise internal dosimetry by convolution superposition, the generated dose point kernels data may prove useful to the wider health physics community.


Assuntos
Doses de Radiação , Radioisótopos/uso terapêutico , Método de Monte Carlo , Fótons , Radiometria
19.
Med Phys ; 46(7): 2935-2943, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054163

RESUMO

PURPOSE: To present and quantify the effectiveness of a method for the efficient production of 169 Yb high-dose-rate brachytherapy sources with 27 Ci activity upon clinical delivery, which have about the same dose rate in water at 1 cm from the source center as 10 Ci 192 Ir sources. MATERIALS: A theoretical framework for 169 Yb source activation and reactivation using thermal neutrons in a research reactor and 168 Yb-Yb2 O3 precursor is derived and benchmarked against published data. The model is dependent primarily on precursor 168 Yb enrichment percentage, active source volume of the active element, and average thermal neutron flux within the active source. RESULTS: Efficiency gains in 169 Yb source production are achievable through reactivation, and the gains increase with active source volume. For an average thermal neutron flux within the active source of 1 × 1014  n cm-2  s-1 , increasing the active source volume from 1 to 3 mm3 decreased reactor-days needed to generate one clinic-year of 169 Yb from 256 days yr-1 to 59 days yr-1 , and 82%-enriched precursor dropped from 80 mg yr-1 to 21 mg yr-1 . A resource reduction of 74%-77% is predicted for an active source volume increase from 1 to 3 mm3 . CONCLUSIONS: Dramatic cost savings are achievable in 169 Yb source production costs through reactivation if active sources larger than 1 mm3 are used.


Assuntos
Braquiterapia , Doses de Radiação , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/uso terapêutico , Itérbio/química , Itérbio/uso terapêutico , Benchmarking , Dosagem Radioterapêutica
20.
Int J Radiat Oncol Biol Phys ; 105(1): 206-221, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026556

RESUMO

PURPOSE: To systematically review scientific literature on the use of intensity-modulated brachytherapy (IMBT), including static and dynamic shielding approaches, to enhance therapeutic ratio. Studies were evaluated for technique, disease site, dosimetry, applicators, dosimetric calculations, and planning algorithms. Comparisons with standard-of-care brachytherapy techniques, alternative IMBT methods, or both were performed for dose-to-target volumes, organs at risk (OARs), and treatment planning or delivery times. METHODS AND MATERIALS: Inclusion criteria were any peer-reviewed journal articles on IMBT published from January 1, 1980, to January 1, 2019, on PubMed, Google Scholar, Cochrane Library, and EBSCO databases. Two independent investigators reviewed each article for inclusion and exclusion criteria and scope. Data collected on each study included technique, source or shield material, disease site, n of study (n = number of simulated plans/treated patients), dose-to-target/OARs, and planning or delivery times. This review adhered to the Preferred Reporting Items for Systemic reviews and Meta Analyses (PRISMA). RESULTS: Database queries yielded 1734 results, which were reduced to 436 after exclusion criteria and 78 peer-reviewed journal articles after evaluation of scope. Studies per disease site were 31 for cervical; 16 for rectal; 10 for oculocutaneous; 7 for breast; 6 for prostate; and 8 for other, multiple, or no specific disease site. Eighteen studies demonstrated a significant decrease in dose to OARs (5.1%-68.2%), 11 improved treatment planning or delivery times (7.6%-99.7%), and 6 increased target coverage (18.6%-71.6%) relative to standard-of-care or alternative IMBT technique. IMBT consistently decreased dose to OAR compared with the standard of care at the cost of increased planning or delivery times. Innovations in dose calculation or planning algorithms and applicators were capable of ameliorating prolonged treatment intervals. CONCLUSIONS: IMBT techniques improved the therapeutic ratio by reducing OAR doses, facilitating dose escalation, or both. Static-shielding techniques are clinically available as a result of the advent of commercially available heterogeneity-corrected dose-calculation algorithms, whereas dynamic-shielding techniques are still preclinical.


Assuntos
Braquiterapia/métodos , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Braquiterapia/instrumentação , Feminino , Humanos , Masculino , Doses de Radiação , Proteção Radiológica/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA