Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 130(2): 838-852, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31725411

RESUMO

Pattern recognition receptors (PRRs) are crucial for responses to infections and tissue damage; however, their role in autoimmunity is less clear. Herein we demonstrate that 2 C-type lectin receptors (CLRs) Mcl and Mincle play an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Congenic rats expressing lower levels of Mcl and Mincle on myeloid cells exhibited a drastic reduction in EAE incidence. In vivo silencing of Mcl and Mincle or blockade of their endogenous ligand SAP130 revealed that these receptors' expression in the central nervous system is crucial for T cell recruitment and reactivation into a pathogenic Th17/GM-CSF phenotype. Consistent with this, we uncovered MCL- and MINCLE-expressing cells in brain lesions of MS patients and we further found an upregulation of the MCL/MINCLE signaling pathway and an increased response following MCL/MINCLE stimulation in peripheral blood mononuclear cells from MS patients. Together, these data support a role for CLRs in autoimmunity and implicate the MCL/MINCLE pathway as a potential therapeutic target in MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Lectinas Tipo C/imunologia , Esclerose Múltipla/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais/imunologia , Células Th17/imunologia , Animais , Encefalomielite Autoimune Experimental/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Lectinas Tipo C/genética , Esclerose Múltipla/genética , Ratos , Ratos Transgênicos , Receptores Imunológicos/genética , Transdução de Sinais/genética
2.
J Leukoc Biol ; 99(3): 437-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26516183

RESUMO

Dendritic cells are professional APCs that play a central role in the initiation of immune responses. The limited ex vivo availability of dendritic cells inspires the widespread use of bone marrow-derived dendritic cells as an alternative in research. However, the functional characteristics of bone marrow-derived dendritic cells are incompletely understood. Therefore, we compared functional and phenotypic characteristics of rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3 ligand bone marrow-derived dendritic cells. A comparison of surface markers revealed that FLT3 ligand-bone marrow-derived dendritic cells expressed signal regulatory protein α, CD103, and CD4 and baseline levels of MHC class II, CD40, and CD86, which were highly up-regulated upon stimulation. Conversely, GM-CSF/IL-4-bone marrow-derived dendritic cells constitutively expressed signal regulatory protein α, CD11c, and CD11b but only mildly up-regulated MHC class II, CD40, or CD86 following stimulation. Expression of dendritic cell-associated core transcripts was restricted to FLT3 ligand-bone marrow-derived dendritic cells . GM-CSF/IL-4-bone marrow-derived dendritic cells were superior at phagocytosis but were outperformed by FLT3 ligand-bone marrow-derived dendritic cells at antigen presentation and T cell stimulation in vitro. Stimulated GM-CSF/IL-4-bone marrow-derived dendritic cells secreted more TNF, CCL5, CCL20, and NO, whereas FLT3 ligand-bone marrow-derived dendritic cells secreted more IL-6 and IL-12. Finally, whereas GM-CSF/IL-4-bone marrow-derived dendritic cell culture supernatants added to resting T cell cultures promoted forkhead box p3(+) regulatory T cell populations, FLT3 ligand-bone marrow-derived dendritic cell culture supernatants drove Th17 differentiation. We conclude that rat GM-CSF/IL-4-bone marrow-derived dendritic cells and FLT3 ligand-bone marrow-derived dendritic cells are functionally distinct. Our data support the current rationale that FLT3 ligand-bone marrow-derived dendritic cells mostly resemble classic dendritic cells but comprise additional minor subpopulations, whereas GM-CSF/IL-4-bone marrow-derived dendritic cells resemble monocyte-derived inflammatory dendritic cells (iNOS-positive monocyte-derived cells).


Assuntos
Células da Medula Óssea/fisiologia , Células Dendríticas/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-4/farmacologia , Proteínas de Membrana/farmacologia , Animais , Fenótipo , Ratos , Ratos Endogâmicos Lew
3.
J Inflamm Res ; 8: 211-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26622189

RESUMO

Multiple sclerosis (MS) is a complex autoimmune condition with firmly established genetic and environmental components. Genome-wide association studies (GWAS) have revealed a large number of genetic polymorphisms in the vicinity of, and within, genes that associate to disease. However, the significance of these single-nucleotide polymorphisms in disease and possible mechanisms of action remain, with a few exceptions, to be established. While the animal model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in understanding immunity in general and mechanisms of MS disease in particular, much of the translational information gathered from the model in terms of treatment development (glatiramer acetate and natalizumab) has been extensively summarized. In this review, we would thus like to cover the work done in EAE from a GWAS perspective, highlighting the research that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. Understanding the contribution of these pathways to disease might allow for the stratification of disease subphenotypes in patients and in turn open the possibility for new and individualized treatment approaches in the future.

4.
J Neuroinflammation ; 12: 194, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511327

RESUMO

BACKGROUND: Ιn multiple sclerosis (MS), axonal damage leads to permanent neurological disabilities and the spreading of the autoimmune response to axonal antigens is implicated in disease progression. Experimental autoimmune encephalomyelitis (EAE) provides an animal model that mimics MS. Using different EAE models, we investigated the pathophysiological basis of epitope spreading to neurofascin, a protein localized at the node of Ranvier and its regulation by non-MHC genes. METHODS: We used two different EAE models in DA rat; one which is induced with myelin oligodendrocyte glycoprotein (MOG) which leads to disease characterized by profound demyelination, and the second which is induced with myelin basic protein (MBP) peptide 63-88 which results in severe central nervous system (CNS) inflammation but little or no demyelination. We determined anti-neurofascin antibody levels during the course of disease. Furthermore, the anti-neurofascin IgG response was correlated with clinical parameters in 333 (DAxPVG.1AV1) x DA rats on which we performed linkage analysis to determine if epitope spreading to neurofascin was affected by non-MHC genes. RESULTS: Spreading of the antibody response to neurofascin occurred in demyelinating MOG-induced EAE but not in EAE induced with MBP peptide 63-88. Anti-neurofascin IgG levels correlated with disease severity in (DAxPVG.1AV1) x DA rats, and a genomic region on chromosome 3 was found to influence this response. CONCLUSIONS: Inter-molecular epitope spreading to neurofascin correlates with disease severity in MOG-EAE is dependent on extensive demyelination and is influenced by non-MHC genes. The findings presented here may shed light on factors involved in the severity of MS and its genetics.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Animais , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Epitopos , Feminino , Imunoglobulina G/imunologia , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Proteína Básica da Mielina/farmacologia , Peptídeos/farmacologia , Ratos
5.
PLoS Genet ; 10(3): e1004265, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24676147

RESUMO

Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE), using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37-54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting-like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease.


Assuntos
Encefalomielite Autoimune Experimental/genética , Epigênese Genética , Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Alelos , Animais , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 6/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Fatores de Risco
6.
Hum Mol Genet ; 22(24): 4952-66, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23900079

RESUMO

The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation.


Assuntos
Autoimunidade/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Encefalomielite Autoimune Experimental/metabolismo , Epistasia Genética , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Interferons/metabolismo , Masculino , Fenótipo , Locos de Características Quantitativas , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
J Neuroinflammation ; 10: 60, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23656637

RESUMO

BACKGROUND: C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection. METHODS: The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains. RESULTS: Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury. CONCLUSIONS: In summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.


Assuntos
Lectinas Tipo C/genética , Neurônios Motores/fisiologia , Família Multigênica/genética , Radiculopatia/genética , Radiculopatia/patologia , Linfócitos T/fisiologia , Animais , Animais Congênicos , Apresentação de Antígeno , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Astrócitos/metabolismo , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Lectinas Tipo C/metabolismo , Análise em Microsséries , Microglia/metabolismo , Proteínas da Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Raízes Nervosas Espinhais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA