Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762086

RESUMO

Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/genética , Vemurafenib/farmacologia , Regulação para Cima , Fator Rho , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Proteínas de Checkpoint Imunológico
2.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534166

RESUMO

The eukaryotic cytoskeleton plays essential roles in cell signaling and trafficking, broadly associated with immunity and diseases in humans and plants. To date, most studies describing cytoskeleton dynamics and function rely on qualitative/quantitative analyses of cytoskeletal images. While state-of-the-art, these approaches face general challenges: the diversity among filaments causes considerable inaccuracy, and the widely adopted image projection leads to bias and information loss. To solve these issues, we developed the Implicit Laplacian of Enhanced Edge (ILEE), an unguided, high-performance approach for 2D/3D-based quantification of cytoskeletal status and organization. Using ILEE, we constructed a Python library to enable automated cytoskeletal image analysis, providing biologically interpretable indices measuring the density, bundling, segmentation, branching, and directionality of the cytoskeleton. Our data demonstrated that ILEE resolves the defects of traditional approaches, enables the detection of novel cytoskeletal features, and yields data with superior accuracy, stability, and robustness. The ILEE toolbox is available for public use through PyPI and Google Colab.


Assuntos
Algoritmos , Citoesqueleto , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microtúbulos , Plantas , Animais
3.
Front Oncol ; 12: 766794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444937

RESUMO

Single agent and combination therapy with BRAFV600E/K and MEK inhibitors have remarkable efficacy against melanoma tumors with activating BRAF mutations, but in most cases BRAF inhibitor (BRAFi) resistance eventually develops. One resistance mechanism is reactivation of the ERK pathway. However, only about half of BRAFi resistance is due to ERK reactivation. The purpose of this study is to uncover pharmacological vulnerabilities of BRAFi-resistant melanoma cells, with the goal of identifying new therapeutic options for patients whose tumors have developed resistance to BRAFi/MEKi therapy. We screened a well-annotated compound library against a panel of isogenic pairs of parental and BRAFi-resistant melanoma cell lines to identify classes of compounds that selectively target BRAFi-resistant cells over their BRAFi-sensitive counterparts. Two distinct patterns of increased sensitivity to classes of pharmacological inhibitors emerged. In two cell line pairs, BRAFi resistance conferred increased sensitivity to compounds that share the property of cell cycle arrest at M-phase, including inhibitors of aurora kinase (AURK), polo-like kinase (PLK), tubulin, and kinesin. Live cell microscopy, used to track mitosis in real time, revealed that parental but not BRAFi-resistant melanoma cells were able to exit from compound-induced mitotic arrest through mitotic slippage, thus escaping death. Consistent with the key role of Cyclin B1 levels in regulating mitosis at the spindle checkpoint in arrested cells, we found lower Cyclin B1 levels in parental compared with BRAFi-resistant melanoma cells, suggesting that inability to down-regulate Cyclin B1 expression levels may explain the increased vulnerability of resistant cells to mitotic inhibitors. Another BRAFi-resistant cell line showed increased sensitivity to Chk1/2 inhibitors, which was associated with an accumulation of DNA damage, resulting in mitotic failure. This study demonstrates that BRAFi-resistance, in at least a subset of melanoma cells, confers vulnerability to pharmacological disruption of mitosis and suggests a targeted synthetic lethal approach for overcoming resistance to BRAF/MEK-directed therapies.

4.
J Genet Eng Biotechnol ; 20(1): 31, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190906

RESUMO

BACKGROUND: The B30.2 variants lead to most relevant severity forms of familial Mediterranean fever (FMF) manifestations. The B30.2 domain plays a key role in protein-protein interaction (PPI) of pyrin with other apoptosis proteins and in regulation the cascade of inflammatory reactions. Pyrin-casp1 interaction is mainly responsible for the dysregulation of the inflammatory responses in FMF. Lower binding affinity was observed between the mutant B30.2 pyrin and casp1 without the release of the complete pathogenicity mechanism. The aim of this study was to identify the possible effects of the interface pocked residues in B30.2/SPRY-Casp1/p20 complex using molecular mechanics simulation and in silico analysis. RESULTS: It was found that Lys671Met, Ser703Ile, and Ala744Ser variants led mainly to shift of the binding affinity (∆G), dissociation constant (Kd), and root mean square deviation (RMSD) in B30.2/SPRY-Casp1/p20 complex leading to dynamic disequilibrium of the p20-B30.2/SPRY complex toward its complex form. The current pathogenicity model and its predicted implementation in the relevant colchicine dosage were delineated. CONCLUSION: The molecular mechanics analysis of B30.2/SPRY-p20 complex harboring Lys671Met, Ser703Ile, and Ala744Ser variants showed dynamic disequilibrium of B30.2/SPRY-casp1/p20complex in context of the studied variants that could be a new computational model for FMF pathogenicity. This study also highlighted the specific biochemical markers that could be useful to adjust the colchicine dose in FMF patients.

5.
J Immunol ; 207(8): 1990-2004, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507949

RESUMO

In type 1 diabetes (T1D) autoreactive CD8 T cells infiltrate pancreatic islets and destroy insulin-producing ß cells. Progression to T1D onset is a chronic process, which suggests that the effector activity of ß-cell autoreactive CD8 T cells needs to be maintained throughout the course of disease development. The mechanism that sustains diabetogenic CD8 T cell effectors during the course of T1D progression has not been completely defined. Here we used single-cell RNA sequencing to gain further insight into the phenotypic complexity of islet-infiltrating CD8 T cells in NOD mice. We identified two functionally distinct subsets of activated CD8 T cells, CD44highTCF1+CXCR6- and CD44highTCF1-CXCR6+, in islets of prediabetic NOD mice. Compared with CD44highTCF1+CXCR6- CD8 T cells, the CD44highTCF1-CXCR6+ subset expressed higher levels of inhibitory and cytotoxic molecules and was more prone to apoptosis. Adoptive cell transfer experiments revealed that CD44highTCF1+CXCR6- CD8 T cells, through continuous generation of the CD44highTCF1-CXCR6+ subset, were more capable than the latter population to promote insulitis and the development of T1D. We further showed that direct IL-27 signaling in CD8 T cells promoted the generation of terminal effectors from the CD44highTCF1+CXCR6- population. These results indicate that islet CD44highTCF1+CXCR6- CD8 T cells are a progenitor-like subset with self-renewing capacity, and, under an IL-27-controlled mechanism, they differentiate into the CD44highTCF1-CXCR6+ terminal effector population. Our study provides new insight into the sustainability of the CD8 T cell response in the pathogenesis of T1D.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Interleucina-27/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Células Secretoras de Insulina/imunologia , Camundongos , Camundongos Endogâmicos NOD
7.
Andrologia ; 52(7): e13619, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32399982

RESUMO

Macrozoospermia is a rare syndrome. The key marker of the disease is a high percentage of spermatozoa with abnormal phenotypes namely enlarged head and multiple tails. The presence of at least 70% of spermatozoa with a large head is usually associated with Aurora kinase C gene (AURKC) mutations. We sought to assess AURKC as a potential genetic actor of macrozoospermia in a sample of infertile Egyptian men. We recruited 30 patients and conducted a clinical examination, semen analysis, and DNA sequencing and RFLP for AURKC. We diagnosed 17 patients with characteristic macrozoospermia and classified them into eight severe and nine mild cases. We detected genetic variants of AURKC in five patients (29.4%): Three patients with severe macrozoospermia had c.144delC mutations in exon 3 (37.5% of the severe), and two mild cases had c.1157G>A polymorphism in the 3' UTR (22.2% of the mild). A successful intracytoplasmic sperm injection (ICSI) was achieved only with a severe macrozoospermia patient without apparent AURKC mutation. The present study is the first report to link macrozoospermia and AURKC mutations in Egypt. The study recommends macrozoospermia patients to perform AURKC gene analysis and attempt ICSI, even those with a high percentage of large head spermatozoa.


Assuntos
Infertilidade Masculina , Aurora Quinase C/genética , Análise Mutacional de DNA , Egito , Humanos , Infertilidade Masculina/genética , Masculino , Espermatozoides
8.
J Immunol ; 204(11): 2887-2899, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295876

RESUMO

CD137 modulates type 1 diabetes (T1D) progression in NOD mice. We previously showed that CD137 expression in CD4 T cells inhibits T1D, but its expression in CD8 T cells promotes disease development by intrinsically enhancing the accumulation of ß-cell-autoreactive CD8 T cells. CD137 is expressed on a subset of FOXP3+ regulatory CD4 T cells (Tregs), and CD137+ Tregs are the main source of soluble CD137. Soluble CD137 suppresses T cells in vitro by binding to the CD137 ligand (CD137L) upregulated on activated T cells. To further study how the opposing functions of CD137 are regulated, we successfully targeted Tnfsf9 (encoding CD137L) in NOD mice using the CRISPR/Cas9 system (designated NOD.Tnfsf9 -/-). Relative to wild-type NOD mice, T1D development in the NOD.Tnfsf9 -/- strain was significantly delayed, and mice developed less insulitis and had reduced frequencies of ß-cell-autoreactive CD8 T cells. Bone marrow chimera experiments showed that CD137L-deficient hematopoietic cells were able to confer T1D resistance. Adoptive T cell transfer experiments showed that CD137L deficiency on myeloid APCs was associated with T1D suppression. Conversely, lack of CD137L on T cells enhanced their diabetogenic activity. Furthermore, neither CD137 nor CD137L was required for the development and homeostasis of FOXP3+ Tregs. However, CD137 was critical for the in vivo T1D-suppressive activity of FOXP3+ Tregs, suggesting that the interaction between CD137 and CD137L regulates their function. Collectively, our results provide new insights into the complex roles of CD137-CD137L interaction in T1D.


Assuntos
Ligante 4-1BB/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Linfócitos T Reguladores/metabolismo , Ligante 4-1BB/genética , Animais , Antígenos CD4/metabolismo , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Humanos , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Quimeras de Transplante , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
9.
Cell Rep ; 29(10): 3073-3086.e5, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801074

RESUMO

Human genetic studies implicate interleukin-27 (IL-27) in the pathogenesis of type 1 diabetes (T1D), but the underlying mechanisms remain largely unexplored. To further define the role of IL-27 in T1D, we generated non-obese diabetic (NOD) mice deficient in IL-27 or IL-27Rα. In contrast to wild-type NOD mice, both NOD.Il27-/- and NOD.Il27ra-/- strains are completely resistant to T1D. IL-27 from myeloid cells and IL-27 signaling in T cells are critical for T1D development. IL-27 directly alters the balance of regulatory T cells (Tregs) and T helper 1 (Th1) cells in pancreatic islets, which in turn modulates the diabetogenic activity of CD8 T cells. IL-27 also directly enhances the effector function of CD8 T cells within pancreatic islets. In addition to T1D, IL-27 signaling in T cells is also required for lacrimal and salivary gland inflammation in NOD mice. Our study reveals that IL-27 contributes to autoimmunity in NOD mice through multiple mechanisms and provides substantial evidence to support its pathogenic role in human T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Inflamação/imunologia , Interleucinas/imunologia , Síndrome de Sjogren/imunologia , Animais , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Ilhotas Pancreáticas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
10.
Sci Rep ; 9(1): 4316, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867509

RESUMO

Rodent complex trait genetic studies involving a cross between two inbred strains are usually followed by congenic mapping to refine the loci responsible for the phenotype. However, progressing from a chromosomal region to the actual causal gene remains challenging because multiple polymorphic genes are often closely linked. The goal of this study was to develop a strategy that allows candidate gene testing by allele-specific expression without prior knowledge of the credible causal variant. Tnfrsf9 (encoding CD137) is a candidate gene for the Idd9.3 type 1 diabetes (T1D) susceptibility locus in the nonobese diabetic (NOD) mouse model. A C57BL/10Sn (B10)-derived diabetes resistance Idd9.3 congenic region has been shown to enhance accumulation of CD137+ regulatory T cells and serum soluble CD137 in NOD mice. By combining the power of congenic mapping and nuclease-based gene targeting, we established a system where a pair of F1 hybrids expressed either the B10 or NOD Tnfrsf9 allele mimicking coisogenic strains. Using this approach, we demonstrated that the allelic difference in B10 and NOD Tnfrsf9 alone was sufficient to cause differential accumulation of CD137+ regulatory T cells and serum soluble CD137 levels. This strategy can be broadly applied to other rodent genetic mapping studies.


Assuntos
Diabetes Mellitus Tipo 1/genética , Marcação de Genes/métodos , Loci Gênicos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Alelos , Animais , Animais Congênicos , Mapeamento Cromossômico , Desoxirribonucleases/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Predisposição Genética para Doença/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
11.
Int J Parasitol ; 46(3): 205-212, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747561

RESUMO

Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community.


Assuntos
Entamoeba histolytica/genética , Interferência de RNA , Entamoeba histolytica/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo
12.
PLoS One ; 10(7): e0133740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230096

RESUMO

Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.


Assuntos
Entamoeba histolytica/genética , Inativação Gênica/fisiologia , Clivagem do RNA/genética , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Entamoeba histolytica/enzimologia , Genes de Protozoários/genética , Genes de Protozoários/fisiologia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/fisiologia , Clivagem do RNA/fisiologia , Ribonuclease III/fisiologia , Saccharomyces/genética , Saccharomyces/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
13.
J Biol Chem ; 290(34): 21114-21130, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26149683

RESUMO

RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica.


Assuntos
Proteínas Argonautas/genética , Entamoeba histolytica/genética , Inativação Gênica , Histonas/genética , Proteínas de Protozoários/genética , Transcrição Gênica , Sequência de Aminoácidos , Proteínas Argonautas/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Metilação de DNA , Entamoeba histolytica/metabolismo , Histonas/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Transdução de Sinais
14.
Eukaryot Cell ; 11(9): 1119-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22798390

RESUMO

Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA Mitocondrial , RNA Interferente Pequeno , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Trypanosoma brucei brucei/genética
15.
RNA ; 16(11): 2239-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20855539

RESUMO

TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.


Assuntos
Cinetocoros/metabolismo , Plastídeos/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Sequência de Bases , Dados de Sequência Molecular , RNA de Protozoário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA