Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 280(Pt 1): 135528, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278448

RESUMO

Citrus Huanglongbing (HLB) poses an enormous challenge to Citrus cultivation worldwide, necessitating groundbreaking interventions beyond conventional pharmaceutical methods. In this study, we propose molybdenum disulfide-chitosan nanoparticles (MoS2-CS NPs) through electrostatic adsorption, preserving the plant-beneficial properties of molybdenum disulfide (MoS2), while enhancing its antibacterial effectiveness through chitosan modification. MoS2-CS NPs exhibited significant antibacterial efficacy against RM1021, and the closest relatives to Candidatus Liberibacter asiaticus (CLas), Erwinia carotovora, and Xanthomonas citri achieved survival rates of 7.40 % ± 1.74 %, 8.94 % ± 1.40 %, and 6.41 % ± 0.56 %, respectively. In vivo results showed, CLas survival rate of 10.42 % ± 3.51 %. Furthermore, treatment with MoS2-CS NPs resulted in an increase in chlorophyll and carotenoid content. Concomitantly, a significant reduction in malondialdehyde (MDA), soluble sugar, hydrogen peroxide (H2O2), and starch contents was also observed. Mechanistically, MoS2-CS NPs enhanced the activity of antioxidant-related enzymes by upregulating the expression of antioxidant genes, thereby galvanizing the antioxidant system to alleviate oxidative stress. Collectively, this dual functionality-combining direct antibacterial action with the activation of plant defense mechanisms-marks a promising strategy for managing Citrus Huanglongbing and suggests potential agricultural applications for MoS2-based antibacterial treatments.

2.
Biomaterials ; 304: 122430, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100907

RESUMO

Nanoparticles of biological origin exhibit many unique properties in biological applications due to their exquisite structure, specific composition, and natural biological functionality. In this study, we obtained lysosomes from three distinct cell types (one normal cell and two activated immune cells) and demonstrated their potential as natural therapeutic nanoparticles for tumor therapy. In vitro experiments revealed that these lysosomes maintained their structural integrity, were well-distributed, and exhibited significant biological activity, which effectively induced cancer cell death by generating ROS and disrupting biological substrates. Additionally, in vivo investigations showed that these lysosomes could accumulate in tumor tissues after intravenous administration and exhibited exceptional therapeutic effects through the destruction of tumor blood vessels and the degradation of immunosuppressive proteins, with complete tumor disappearance in a single treatment. This research on the utilization of bioactive lysosomes for tumor treatment provides valuable insights into drug development and tumor treatment, particularly when conventional approaches have proven ineffective.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Morte Celular , Nanopartículas/química , Linhagem Celular Tumoral
3.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687218

RESUMO

This study aimed to investigate the phenolic and antioxidant properties of Egyptian Sonchus oleraceus leaves extract (SOE) while comparing the antihyperglycemic efficacy of SOE with that of conventional medicines (glibenclamide) in vivo as a substitution for insulin-deficient patients. Total phenolic (TPC) and flavonoid contents (TFC) in SOE contributed around 127.66 ± 0.56 mg GAE/gm as gallic acid equivalent (GAE) and 74.80 ± 0.55 mg QE/gm as quercetin equivalent (QE). SOE also showed significant DPPH scavenging activity at 43.46%. The presence of five phenolic and six flavonoid compounds in SOE was discovered by HPLC analysis. For the in vivo assay, 42 rats were distributed into six groups (7 Wister albino rats each). The standard control group was fed a basal diet. While the 35 rats were induced with a single dose of 100 mg kg-1 body weight (b.w.) alloxan, then treated orally with glibenclamide (GLI) at 10 mg kg-1, 100, 200, and 300 mg kg-1 SOE (positive control group) for 56 days of routine gastric oral gavages and compared to the effects of GLI, the treatment of SOE 200 and 300 mg kg-1 in diabetic rats for two months dramatically decreased blood glucose, total lipid, total cholesterol, and low-density lipoprotein cholesterol (LDLC) while boosting high-density lipoprotein cholesterol (HDLC) levels and improving liver and kidney functions. The histological assay revealed that the SOE 300 mg kg-1 treatment significantly improved the pancreas tissues, implying the potential application of Egyptian SOE as a diabetes treatment.


Assuntos
Diabetes Mellitus Experimental , Sonchus , Animais , Ratos , Ratos Wistar , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Antioxidantes/farmacologia , Glibureto , Diabetes Mellitus Experimental/tratamento farmacológico , Egito , Ácido Gálico , Quercetina , LDL-Colesterol , Flavonoides/farmacologia
4.
Adv Healthc Mater ; 11(1): e2101703, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626528

RESUMO

Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Transporte Biológico , Humanos , Nanotecnologia , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Microambiente Tumoral
5.
Adv Mater ; 33(41): e2104504, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34436814

RESUMO

One of the main challenges for tumor vascular infarction in combating cancer lies in failing to produce sustained complete thrombosis. Inspired by the capability of vascular infarction in blocking the delivery of oxygen to aggravate tumor hypoxia, the performance of selective tumor thrombus inducing hypoxia activation therapy to improve the therapeutic index of coagulation-based tumor therapy is presented. By encapsulating coagulation-inducing protease thrombin and a hypoxia-activated prodrug (HAP) tirapazamine into metal-organic framework nanoparticles with a tumor-homing ligand, the obtained nanoplatform selectively activates platelet aggregation at the tumor to induce thrombosis and vascular obstruction therapy by the exposed thrombin. Meanwhile, the thrombus can cut off the blood oxygen supply and potentiate the hypoxia levels to enhance the HAP therapy. This strategy not only addresses the dissatisfaction of vascular therapy, but also conquers the dilemma of inadequate hypoxia in HAP treatment. Since clinical operations such as surgery can be used to induce coagulation, coagulation-based synergistic therapy is promising for translation into a clinical combination regimen.


Assuntos
Pró-Fármacos/química , Trombina/química , Hipóxia Tumoral , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Estruturas Metalorgânicas/química , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Agregação Plaquetária/efeitos dos fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Trombose/patologia , Tirapazamina/química , Transplante Heterólogo , Hipóxia Tumoral/efeitos dos fármacos
6.
ACS Appl Bio Mater ; 4(3): 2009-2019, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014326

RESUMO

Metal-respiring bacteria are frequently used to recycle metal resources by biosynthesizing nanoparticles on its surface in environment treatment. However, further utilization of biogenetic nanoparticles through combining the advantages of both bacteria and nanoparticles is still limited. Herein, biogenetic Au@Ag nanoislands are utilized as the surface-enhanced Raman spectroscopy (SERS) substrate for quantitative detection. Specifically, Au@Ag nanoislands enhance the Raman signal via surface plasmon resonance, while biomolecules (phospholipid, tyrosine, and phenylalanine, etc.) on bacterium serve as an internal standard to eliminate the discrepancy of the target SERS intensity in different hot spots. Gene-controlled biomolecules in bacteria guarantee the reproducibility of this SERS substrate. The generality of this analytical method is demonstrated by determining rhodamine 6G, malachite green, and uric acid. This discovery solves a pervasive problem in SERS analysis through a simple biogenetic nanosystem, which opens up an avenue to address scientific challenges by using versatile organisms from nature.


Assuntos
Materiais Biocompatíveis/química , Shewanella/isolamento & purificação , Ouro/química , Teste de Materiais , Tamanho da Partícula , Prata/química , Análise Espectral Raman
7.
Small ; 16(37): e2002748, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32780938

RESUMO

The miniaturization of gold nanorods exhibits a bright prospect for intravital photoacoustic imaging (PAI) and the hollow structure possesses a better plasmonic property. Herein, miniature hollow gold nanorods (M-AuHNRs) (≈46 nm in length) possessing strong plasmonic absorbance in the second near-infrared (NIR-II) window (1000-1350 nm) are developed, which are considered as the most suitable range for the intravital PAI. The as-prepared M-AuHNRs exhibit 3.5 times stronger photoacoustic signal intensity than the large hollow Au nanorods (≈105 nm in length) at 0.2 optical density under 1064 nm laser irradiation. The in vivo biodistribution measurement shows that the accumulation in tumor of miniature nanorods is twofold as high as that of the large counterpart. After modifying with a tumor-targeting molecule and fluorochrome, in living tumor-bearing mice, the M-AuHNRs group gives a high fluorescence intensity in tumors, which is 3.6-fold that of the large ones with the same functionalization. Moreover, in the intravital PAI of living tumor-bearing mice, the M-AuHNRs generate longer-lasting and stronger photoacoustic signal than the large counterpart in the NIR-II window. Overall, this study presents the fabrication of M-AuHNRs as a promising contrast agent for intravital PAI.


Assuntos
Nanotubos , Técnicas Fotoacústicas , Animais , Diagnóstico por Imagem , Ouro , Camundongos , Distribuição Tecidual
8.
ACS Appl Mater Interfaces ; 12(35): 39434-39443, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805937

RESUMO

Photothermal therapy (PTT) is considered an alternative for oncotherapy because it has less invasive damage to normal tissues than other methods, particularly in second near-infrared (NIR-II) PTT (1000-1350 nm) because of deeper biological tissue penetration, lower photon scattering, and higher maximum permissible exposure (1.0 W cm-2). However, for achieving a higher therapeutic effect, the delivery of large amounts of NIR-sensitive agents has been pursued, which in turn enormously increases damage to normal cells. Herein, we developed peptide-coated platinum nanoparticles (TPP-Pt) to create violent damage for a given amount of hyperthermia by purposefully delivering TPP-Pt to the thermally susceptible mitochondria with minimal side effects. Mitochondrial peptide targeting endowed ultrasmall platinum nanoparticles (PtNPs) with monodispersity, high stability, biosafety, and enhanced uptake of cancer cells and priority of mitochondria, causing efficient PTT. Moreover, an in vivo experiment showed that the excellent tumor inhibitory effect and negligible side effects could be achieved with the preferentially striking thermosensitive mitochondria strategy. The mitochondria-based "win by one move" therapeutic platform of peptide-coated platinum nanoparticles (TPP-Pt) demonstrated here will find great potential to overcome the challenges of low therapeutic efficiency and strong systemic side effects in PTT.


Assuntos
Raios Infravermelhos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/efeitos dos fármacos , Peptídeos/química , Platina/química , Animais , Carbocianinas/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Hep G2 , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Nus , Microscopia Confocal , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Terapia Fototérmica , Transplante Heterólogo
9.
Food Chem ; 328: 127106, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32485584

RESUMO

In this work, based on the strawberry-like SiO2/Ag nanocomposites (SANC) immersed filter paper, a newly surface-enhanced Raman scattering (SERS) substrate was constructed for the detection of acrylamide (AAm) in food products. To construct filter paper-based SANC (F-SANC) SERS substrates, SiO2 nanoparticles (SNP) were firstly synthesized and acted as carriers. After that, the in-situ preparation of silver nanoparticles (Ag NP) on SNP surface was carried out to form the strawberry-like three-dimensional (3D) structure of SANC. Finally, SANC were entangled into the filter paper to produce nanoarchitecture, thus providing enhanced plasmon resonance between SANC with strong SERS signal. Under the optimized conditions, the method exhibited good performance toward AAm with a vast linear response from 0.1 nM to 50 µM (R = 0.9935), limit of detection (LOD) of 0.02 nM (S/N = 3), and the recoveries of 80.5%~105.6% for practical samples. This strategy showed good robustness in the rapid and sensitive detection of AAm, which could be a promising strategy in food analysis and verification.


Assuntos
Acrilamida/análise , Análise de Alimentos/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , Análise Espectral Raman/métodos , Filtração/instrumentação , Análise de Alimentos/instrumentação , Limite de Detecção , Dióxido de Silício/química , Prata/química
10.
ACS Appl Mater Interfaces ; 12(26): 29122-29132, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501679

RESUMO

Bacteria show promise for use in the field of combination cancer therapy because of their abilities to accumulate in tumors and their roles as natural immunologic adjuvants. However, the huge size of bacteria decreases their chances of being delivered into tumor cells. Moreover, their toxins may cause systemic toxicity in living organisms. Here, we proposed a method to in situ synthesize Au nanoparticles on the surface of Escherichia coli (E. coli), followed by sonication to acquire Au nanoparticles loaded membrane nanosheets (AuMNs) for use in photothermal and combination cancer therapy. Compared to E. coli-loaded Au nanoparticles (E. coli@Au), the small size of membrane nanosheets can be successfully delivered into tumor cells. In addition, the enrichment of AuMNs in tumor site is significantly enhanced via EPR effect, facilitating to activate photothermal conversion under 808 nm laser. Besides, the function of bacteria as natural immunologic adjuvants to promote anti-PD-L1 efficacy is still retained in AuMNs, while the inflammation and damage to viscera caused by AuMNs were milder than E. coli@Au. This study aims to decrease the systemic toxicity of bacteria and promote anti-PD-L1 efficacy in bacteria-mediated combination therapy, so as to open up a new avenue for drug delivery via natural processes.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/metabolismo , Ouro/química , Humanos
11.
Anal Chem ; 92(13): 8802-8809, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450687

RESUMO

The outbreak of rabies virus (RABV) in Asia and Africa has attracted widespread concern due to its 100% mortality rate, and RABV detection is crucial to its diagnosis and treatment. Herein, we report a sensitive and reliable strategy for the dual-modal RABV detection using pomegranate-shaped dendritic silica nanospheres fabricated with densely incorporated quantum dots (QDs) and horseradish peroxidase (HRP)-labeled antibody. The immunoassay involves the specific interaction between virus and nanospheres-conjugated antibody coupled with robust fluorescence signal originating from QDs and naked-eye discernible colorimetric signal on the oxTMB. The ultrahigh loading capacity of QDs enables the detection limit down to 8 pg/mL via fluorescence modality, a 348-fold improvement as compared with conventional enzyme-linked immunosorbent assay (ELISA). In addition, the detection range was from 1.20 × 102 to 2.34 × 104 pg/mL by plotting the absorbance at 652 nm with RABV concentrations with a detection limit of 91 pg/mL, which is nearly 2 order of magnitude lower than that of the conventional ELISA. Validated with 12 brain tissue samples, our immunoassay results are completely consistent with polymerase chain reaction (PCR) results. Compared with the PCR assay, our approach requires no complex sample pretreatments or expensive instruments. This is the first report on RABV diagnosis using nanomaterials for colorimetry-based prescreening and fluorescence-based quantitative detection, which may pave the way for virus-related disease diagnosis and clinical analysis.


Assuntos
Imunoensaio/métodos , Proteínas do Nucleocapsídeo/análise , Pontos Quânticos/química , Vírus da Raiva/metabolismo , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Encéfalo/virologia , Colorimetria , Limite de Detecção , Camundongos , Nanosferas/química , Proteínas do Nucleocapsídeo/imunologia , Dióxido de Silício/química
12.
iScience ; 23(5): 101049, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32334412

RESUMO

Currently, patients receiving cancer treatments routinely suffer from distressing toxic effects, most originating from premature drug leakage, poor biocompatibility, and off-targeting. For tackling this challenge, we construct an intracellular Ca2+ cascade for tumor therapy via photothermal activation of TRPV1 channels. The nanoplatform creates an artificial calcium overloading stress in specific tumor cells, which is responsible for efficient cell death. Notably, this efficient treatment is activated by mild acidity and TRPV1 channels simultaneously, which contributes to precise tumor therapy and is not limited to hypoxic tumor. In addition, Ca2+ possesses inherent unique biological effect and normal cells are more tolerant of the undesirable destructive influence than tumor cells. The Ca2+ overload leads to cell death due to mitochondrial dysfunction (upregulation of Caspase-3, cytochrome c, and downregulation of Bcl-2 and ATP), and in vivo, the released photothermal CuS nanoparticles allow an enhanced 3D photoacoustic imaging and provide instant diagnosis.

13.
Sci Rep ; 10(1): 1663, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015452

RESUMO

Enzyme immobilization is a powerful tool not only as a protective agent against harsh reaction conditions but also for the enhancement of enzyme activity, stability, reusability, and for the improvement of enzyme properties as well. Herein, immobilization of ß-glucosidase from Thermotoga maritima (Tm-ß-Glu) on magnetic nanoparticles (MNPs) functionalized with chitin (Ch) was investigated. This technology showed a novel thermostable chitin-binding domain (Tt-ChBD), which is more desirable in a wide range of large-scale applications. This exclusive approach was fabricated to improve the Galacto-oligosaccharide (GOS) production from a cheap and abundant by-product such as lactose through a novel green synthesis route. Additionally, SDS-PAGE, enzyme activity kinetics, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) revealed that among the immobilization strategies for Thermotoga maritime-ß-Glucosidase thermostable chitin-binding domain (Tm-ß-Glu-Tt-ChBD) on the attractive substrate; Ch-MNPs had the highest enzyme binding capacity and GOS production ratio when compared to the native enzyme. More interestingly, a magnetic separation technique was successfully employed in recycling the immobilized Tm-ß-Glu for repetitive batch-wise GOS without significant loss or reduction of enzyme activity. This immobilization system displayed an operative stability status under various parameters, for instance, temperature, pH, thermal conditions, storage stabilities, and enzyme kinetics when compared with the native enzyme. Conclusively, the GOS yield and residual activity of the immobilized enzyme after the 10th cycles were 31.23% and 66%, respectively. Whereas the GOS yield from native enzyme synthesis was just 25% after 12 h in the first batch. This study recommends applying Tt-ChBD in the immobilization process of Tm-ß-Glu on Ch-MNPs to produce a low-cost GOS as a new eco-friendly process besides increasing the biostability and efficiency of the immobilized enzyme.


Assuntos
Thermotoga maritima/enzimologia , beta-Glucosidase/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitina/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Cinética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Modelos Moleculares , Oligossacarídeos/biossíntese , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Thermotoga maritima/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
14.
Saudi J Biol Sci ; 27(1): 448-455, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31889869

RESUMO

The unceasing emerging of multidrug-resistant bacteria imposes a global foremost human health threat and discovery of new alternative remedies are necessity. The use of plant essential oil in the treatment of many pathogenic bacteria is promising. Acne vulgaris is the most common skin complaint that fears many people about their aesthetic appearance. In this work we investigated the antibacterial activity of some plant oils against acne-inducing bacteria. Three bacterial isolates were identified from Egypt, biochemically and by means of 16s rRNA gene typing, and were designated as Staphylococcus aureus EG-AE1, Staphylococcus epidermidis EG-AE2 and Cutibacterium acnes EG-AE1. Antibiotic susceptibility test showed resistance of the isolates to at least six antibiotics, yet they are still susceptible to the last resort Vancomycin. In vitro investigations of eleven Egyptian plant oils, identified tea tree and rosemary oils to exhibit antibacterial activity against the antibiotic-resistant acne isolates. Inhibition zones of 15 ± 0.5, 21.02 ± 0.73 and 20.85 ± 0.76 mm was detected when tea tree oil applied against the above-mentioned bacteria respectively, while inhibition zones of 12.5 ± 1.5, 15.18 ± 0.38 and 14.77 ± 0.35 mm were detected by rosemary oils. Tea tree and rosemary oils exhibited bacteriostatic and bactericidal activity against all the strains with MICs/MBCs ranging between 39-78 mg/L for tea tree oil and 39-156 mg/L for rosemary oil. All the isolates were killed after 4 and 6 h upon growing with 200 mg/L of tea tree and rosemary oils, respectively. Additionally, gas chromatography mass spectrometry (GC/MS) profiling identified and detected a variable number of antimicrobial compounds in both oils.

15.
ACS Appl Bio Mater ; 3(4): 2392-2400, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025288

RESUMO

Activated doxorubicin (DOX) often has severe systemic toxicity and side effects due to its inability to distinguish tumor cells from normal cells, which seriously affects the prognosis of patients. Here, we synthesized an inactivated a DOX prodrug that could be selectively activated by a light-induced caspase-3 enzyme in the tumor site. In the absence of light, this uniformly dispersed nanoparticle avoided the unnecessary toxicity under physiological conditions. Upon the laser irradiating to the tumor area of interest, the nanoparticles can produce a large amount of reactive oxygen species (ROS) to induce cell apoptosis and activate caspase-3 enzyme to release DOX selectively. Meanwhile, the produced ROS can also combine with activated DOX to cause more potent tumor damage. The experiments demonstrated that the light can effectively activate DOX drug through a series of cascade events and the subsequent synergistic therapy both in vitro and in vivo. This strategy achieved excellent therapeutic outcomes and minimal adverse effects, which should significantly improve the dilemma of traditional chemotherapy.

16.
Theranostics ; 9(17): 4971-4981, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410195

RESUMO

The strategy that combines photodynamic therapy (PDT) and photothermal therapy (PTT) is widely used to achieve strong antitumor efficiency. Since light in the NIR-II window possesses ideal penetration ability, developing NIR-II PTT and NIR-II light triggered photosensitizer release for combined PDT and PTT is very promising in nanomedicine. Methods: We develop a novel nanocarrier (termed AuHNRs-DTPP) by conjugating photosensitizer contained chimeric peptide (DTPP) to Au hollow nanorods (AuHNRs). AuHNRs was obtained by a Te-templated method with the assistance of L-cysteine. The chimeric peptide PpIX-PEG8-GGK(TPP)GRDEVDGC (DTPP) was obtained through a solid-phase peptide synthesis (SPPS) method. Results: Under the 1064 nm laser irradiation, the nanocarrier can accumulate heat quickly for efficient PTT, and then release activated photosensitizer for real-time apoptosis imaging. Thereafter, supplementary PDT can be conducted to kill tumor cells survived from the PTT, and meanwhile the normal tissue can be protected from photo-toxicity. Conclusion: This designed AuHNRs-DTPP nanocarrier with remarkable therapy effect, real-time apoptosis imaging ability and reduced skin damage is of great potential in nanomedicine application.


Assuntos
Apoptose , Nanotubos/química , Neoplasias Experimentais/terapia , Peptídeos/administração & dosagem , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Liberação Controlada de Fármacos , Feminino , Ouro/química , Células HeLa , Humanos , Hipertermia Induzida/métodos , Raios Infravermelhos/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Peptídeos/química , Peptídeos/farmacocinética , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fototerapia/métodos
17.
Biomaterials ; 218: 119312, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299456

RESUMO

Photodynamic therapy (PDT) brings excellent treatment outcome while also causing poor tumor microenvironment and prognosis due to the uncontrolled oxygen consumption. To solve this issue, a novel PDT strategy, oxygenated PDT (maintain the tumor oxygenation before and after PDT) was carried out by a tumor and apoptosis responsive photoactivity conversion nanocomposite (MPPa-DP). Under physiological conditions, this nanocomposite has a low photoactivity. While at H2O2-rich tumor microenvironment, the nanocomposite could react with overexpressed H2O2 to produce O2 and release high photoactivity chimeric peptide PPa-DP for oxygenated tumor and PDT. Importantly, when the PDT mediates cell apoptosis, the photoactivity of PPa-DP be effectively quenched and the O2 consumption appeared retard, which avoided further consumption of residual O2 on apoptotic cells. In vitro and vivo studies revealed that this nanocomposite could efficiently change photoactivity, reasonable control O2 consumption and increase residual O2 content of tumor after PDT.


Assuntos
Nanocompostos/química , Consumo de Oxigênio/fisiologia , Oxigênio/química , Fotoquimioterapia/métodos , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio , Manganês/química , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/fisiologia
18.
Nanomaterials (Basel) ; 9(5)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052386

RESUMO

Triangular silver nanocrystals, well-known as nanoprisms (Ag-NPrs), were successfully developed via a robust and straightforward direct chemical reduction synthetic approach, producing desirable tiny and well-controlled Ag-NPrs. This procedure was accomplished by fabricating a mixture of di-sodium succinate hexa-hydrate (DSSH) and tri-sodium citrate di-hydrate (TSCD) as capping agents at optimal synthetic conditions and under an open-air condition, which proved to be an enormous challenge. Additionally, the Ag-NPrs were fully characterized by UV-vis spectra, X-ray diffraction (XRD), scanning electron microscope (SEM), and dynamic light scattering (DLS). Likewise, the formation stages from spherical silver nanoparticles (Ag-NPs) to triangular Ag-NPrs were also captured simultaneously via transmission electron microscope (TEM) and high-resolution transmission electron microscope (HR-TEM) images. More interestingly, an active thin silica-shell was efficiently applied on the Ag-NPrs outer-layer to increase their functionality. Furthermore, to confirm their biocompatibility, we also carried out cell viability assays for the Ag-NPs, Ag-NPrs, and Ag-NPrs@SiO2 with different concentrations at 62.5, 125, and 250 µg/mL after 12, 24, and 48 h of exposure time, respectively, on a regular African green monkey kidney cell line. The cell viability test results exemplified that the three silver nanostructures were toxic-free and suitable for further potential biological applications in the near future.

19.
Biochem Biophys Rep ; 13: 73-77, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29387811

RESUMO

The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA) was presented for the clinical determination and analysis of human epididymis protein 4 (HE4) in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0-1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA), with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum.

20.
Nanoscale ; 7(45): 18878-82, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26399897

RESUMO

A universal chitosan-assisted method was developed to synthesize various Ag-including heterostructured nanocrystals, in which chelation probably plays a vital role. The as-prepared Ag/Pd heterostructured nanocrystals show outstanding properties when used as bifunctional nanocomposites in label-free in situ SERS monitoring of Pd-catalyzed reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA