Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(1): 83-94, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36574400

RESUMO

Proteases are an important class of drug targets that continue to drive inhibitor discovery. These enzymes are prone to resistance mutations, yet their promise for treating viral diseases and other disorders continues to grow. This study develops a general approach for detecting microbially synthesized protease inhibitors and uses it to screen terpenoid pathways for inhibitory compounds. The detection scheme relies on a bacterial two-hybrid (B2H) system that links protease inactivation to the transcription of a swappable reporter gene. This system, which can accomodate multiple biochemical outputs (i.e., luminescence and antibiotic resistance), permitted the facile incorporation of four disease-relevant proteases. A B2H designed to detect the inactivation of the main protease of severe acute respiratory syndrome coronavirus 2 enabled the identification of a terpenoid inhibitor of modest potency. An analysis of multiple pathways that make this terpenoid, however, suggested that its production was necessary but not sufficient to confer a survival advantage in growth-coupled assays. This finding highlights an important challenge associated with the use of genetic selection to search for inhibitors─notably, the influence of pathway toxicity─and underlines the value of including multiple pathways with overlapping product profiles in pathway screens. This study provides a detailed experimental framework for using microbes to screen libraries of biosynthetic pathways for targeted protease inhibitors.


Assuntos
Proteases 3C de Coronavírus , Inibidores de Proteases , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores
2.
ACS Synth Biol ; 11(9): 3015-3027, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35984356

RESUMO

Terpenoids, the largest and most structurally diverse group of natural products, include a striking variety of biologically active compounds, from flavors to medicines. Despite their well-documented biochemical versatility, the evolutionary processes that generate new functional terpenoids are poorly understood and difficult to recapitulate in engineered systems. This study uses a synthetic biochemical objective─a transcriptional system that links the inhibition of protein tyrosine phosphatase 1B (PTP1B), a human drug target, to the expression of a gene for antibiotic resistance in Escherichia coli (E. coli)─to evolve a terpene synthase to produce enzyme inhibitors. Site saturation mutagenesis of poorly conserved residues on γ-humulene synthase (GHS), a promicuous enzyme, yielded mutants that improved fitness (i.e., the antibiotic resistance of E. coli) by reducing GHS toxicity and/or by increasing inhibitor production. Intriguingly, a combination of two mutations enhanced the titer of a minority product─a terpene alcohol that inhibits PTP1B─by over 50-fold, and a comparison of similar mutants enabled the identification of a site where mutations permit efficient hydroxylation. Findings suggest that the plasticity of terpene synthases enables an efficient sampling of structurally distinct starting points for building new functional molecules and provide an experimental framework for exploiting this plasticity in activity-guided screens.


Assuntos
Alquil e Aril Transferases , Produtos Biológicos , Alquil e Aril Transferases/genética , Escherichia coli/genética , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Terpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA