Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396840

RESUMO

The therapeutic management of Crohn's disease (CD), a chronic relapsing-remitting inflammatory bowel disease (IBD), is highly challenging. Surgical resection is sometimes a necessary procedure even though it is often associated with postoperative recurrences (PORs). Tofacitinib, an orally active small molecule Janus kinase inhibitor, is an anti-inflammatory drug meant to limit PORs in CD. Whereas bidirectional interactions between the gut microbiota and the relevant IBD drug are crucial, little is known about the impact of tofacitinib on the gut microbiota. The HLA-B27 transgenic rat is a good preclinical model used in IBD research, including for PORs after ileocecal resection (ICR). In the present study, we used shotgun metagenomics to first delineate the baseline composition and determinants of the fecal microbiome of HLA-B27 rats and then to evaluate the distinct impact of either tofacitinib treatment, ileocecal resection or the cumulative effect of both interventions on the gut microbiota in these HLA-B27 rats. The results confirmed that the microbiome of the HLA-B27 rats was fairly different from their wild-type littermates. We demonstrated here that oral treatment with tofacitinib does not affect the gut microbial composition of HLA-B27 rats. Of note, we showed that ICR induced an intense loss of bacterial diversity together with dramatic changes in taxa relative abundances. However, the oral treatment with tofacitinib neither modified the alpha-diversity nor exacerbated significant modifications in bacterial taxa induced by ICR. Collectively, these preclinical data are rather favorable for the use of tofacitinib in combination with ICR to address Crohn's disease management when considering microbiota.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Piperidinas , Pirimidinas , Ratos , Animais , Doença de Crohn/tratamento farmacológico , Doença de Crohn/cirurgia , Doença de Crohn/complicações , Ratos Transgênicos , Antígeno HLA-B27 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/complicações , Gerenciamento Clínico
2.
Nutrients ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140362

RESUMO

The first 1000 days of life is a critical period that contributes significantly to the programming of an individual's future health. Among the many changes that occur during this period early in life, there is growing evidence that the establishment of healthy gut microbiota plays an important role in the prevention of both short- and long-term health problems. Numerous publications suggest that the quality of the gut microbiota colonisation depends on several dietary factors, including breastfeeding. In this respect, a relationship between breastfeeding and the risk of inflammatory bowel disease (IBD) has been suggested. IBDs are chronic intestinal diseases, and perinatal factors may be partly responsible for their onset. We review the existence of links between breastfeeding and IBD based on experimental and clinical studies. Overall, despite encouraging experimental data in rodents, the association between breastfeeding and the development of IBD remains controversial in humans, partly due to the considerable heterogeneity between clinical studies. The duration of exclusive breastfeeding is probably decisive for its lasting effect on IBD. Thus, specific improvements in our knowledge could support dietary interventions targeting the gut microbiome, such as the early use of prebiotics, probiotics or postbiotics, in order to prevent the disease.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Humanos , Feminino , Aleitamento Materno , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/prevenção & controle , Prebióticos
3.
World J Gastroenterol ; 29(5): 851-866, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36816618

RESUMO

BACKGROUND: Postoperative recurrence (POR) after ileocecal resection (ICR) affects most Crohn's disease patients within 3-5 years after surgery. Adherent-invasive Escherichia coli (AIEC) typified by the LF82 strain are pathobionts that are frequently detected in POR of Crohn's disease and have a potential role in the early stages of the disease pathogenesis. Saccharomyces cerevisiae CNCM I-3856 is a probiotic yeast reported to inhibit AIEC adhesion to intestinal epithelial cells and to favor their elimination from the gut. AIM: To evaluate the efficacy of CNCM I-3856 in preventing POR induced by LF82 in an HLA-B27 transgenic (TgB27) rat model. METHODS: Sixty-four rats [strain F344, 38 TgB27, 26 control non-Tg (nTg)] underwent an ICR at the 12th wk (W12) of life and were sacrificed at the 18th wk (W18) of life. TgB27 rats were challenged daily with oral administration of LF82 (109 colony forming units (CFUs)/day (d), n = 8), PBS (n = 5), CNCM I-3856 (109 CFUs/d, n = 7) or a combination of LF82 and CNCM I-3856 (n = 18). nTg rats receiving LF82 (n = 5), PBS (n = 5), CNCM I-3856 (n = 7) or CNCM I-3856 and LF82 (n = 9) under the same conditions were used as controls. POR was analyzed using macroscopic (from 0 to 4) and histologic (from 0 to 6) scores. Luminal LF82 quantifications were performed weekly for each animal. Adherent LF82 and inflammatory/regulatory cytokines were quantified in biopsies at W12 and W18. Data are expressed as the median with the interquartile range. RESULTS: nTg animals did not develop POR. A total of 7/8 (87%) of the TgB27 rats receiving LF82 alone had POR (macroscopic score ≥ 2), which was significantly prevented by CNCM I-3856 administration [6/18 (33%) TgB27 rats, P = 0.01]. Macroscopic lesions were located 2 cm above the anastomosis in the TgB27 rats receiving LF82 alone and consisted of ulcerations with a score of 3.5 (2 - 4). Seven out of 18 TgB27 rats (39%) receiving CNCM I-3856 and LF82 had no macroscopic lesions. Compared to untreated TgB27 animals receiving LF82 alone, coadministration of CNCM I-3856 and LF82 significantly reduced the macroscopic [3.5 (2 - 4) vs 1 (0 - 3), P = 0.002] and histological lesions by more than 50% [4.5 (3.3 - 5.8) vs 2 (1.3 - 3), P = 0.003]. The levels of adherent LF82 were correlated with anastomotic macroscopic scores in TgB27 rats (r = 0.49, P = 0.006), with a higher risk of POR in animals having high levels of luminal LF82 (71.4% vs 25%, P = 0.02). Administration of CNCM I-3856 significantly reduced the levels of luminal and adherent LF82, increased the production of interleukin (IL)-10 and decreased the production of IL-23 and IL-17 in TgB27 rats. CONCLUSION: In a reliable model of POR induced by LF82 in TgB27 rats, CNCM I-3856 prevents macroscopic POR by decreasing LF82 infection and gut inflammation.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Ratos , Animais , Doença de Crohn/patologia , Escherichia coli , Saccharomyces cerevisiae , Ratos Transgênicos , Antígeno HLA-B27 , Mucosa Intestinal/patologia , Ratos Endogâmicos F344 , Aderência Bacteriana
4.
Microb Biotechnol ; 16(3): 618-631, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541039

RESUMO

Yarrowia lipolytica is a dimorphic oleaginous non-conventional yeast widely used as a powerful host for expressing heterologous proteins, as well as a promising source of engineered cell factories for various applications. This microorganism has a documented use in Feed and Food and a GRAS (generally recognized as safe) status. Moreover, in vivo studies demonstrated a beneficial effect of this yeast on animal health. However, despite the focus on Y. lipolytica for the industrial manufacturing of heterologous proteins and for probiotic effects, its potential for oral delivery of recombinant therapeutic proteins has seldom been evaluated in mammals. As the first steps towards this aim, we engineered two Y. lipolytica strains, a dairy strain and a laboratory strain, to produce the model fluorescent protein mCherry. We demonstrated that both Y. lipolytica strains transiently persisted for at least 1 week after four daily oral administrations and they maintained the active expression of mCherry in the mouse intestine. We used confocal microscopy to image individual Y. lipolytica cells of freshly collected intestinal tissues. They were found essentially in the lumen and they were rarely in contact with epithelial cells while transiting through the ileum, caecum and colon of mice. Taken as a whole, our results have shown that fluorescent Y. lipolytica strains constitute novel tools to study the persistence and dynamics of orally administered yeasts which could be used in the future as oral delivery vectors for the secretion of active therapeutic proteins in the gut.


Assuntos
Yarrowia , Animais , Camundongos , Yarrowia/genética , Proteínas Recombinantes/genética , Imagem Óptica , Intestinos , Engenharia Metabólica/métodos , Mamíferos/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012472

RESUMO

Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.01) following the addition of a polysorbate detergent (Tween® 80) during or either shortly after the growth of a P. freudenreichii culture. We evaluated the optimal Tween® 80 concentration for pretreatment conditions, documented the role of other detergents, and explored the possible mechanisms involved. Our results reveal a novel, environmentally friendly, low-cost pretreatment procedure for enhancing the selective removal of lead from water by probiotic-documented bacteria.


Assuntos
Propionibacterium freudenreichii , Propionibacterium , Chumbo , Polissorbatos , Água
7.
J Crohns Colitis ; 16(10): 1617-1627, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997152

RESUMO

BACKGROUND AND AIMS: Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota. METHODS: The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively. RESULTS: The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation. CONCLUSIONS: Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.


Assuntos
Bacteriófagos , Colite , Animais , Humanos , Camundongos , Aderência Bacteriana , Colite/patologia , Modelos Animais de Doenças , Disbiose/complicações , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Mucosa Intestinal/patologia
8.
Microorganisms ; 9(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34576719

RESUMO

The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn's disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain's clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains' ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC's virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans' lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.

9.
Infect Immun ; 89(9): e0073420, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820816

RESUMO

Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.


Assuntos
Infecções por Enterobacteriaceae/etiologia , Ácidos Graxos Voláteis/biossíntese , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/complicações , Influenza Humana/virologia , Mucosa Intestinal/metabolismo , Interações Microbianas , Suscetibilidade a Doenças , Disbiose , Infecções por Enterobacteriaceae/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/metabolismo , Mucosa Intestinal/imunologia
10.
Microorganisms ; 9(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671764

RESUMO

Toxic metals (such as lead, cadmium, and, to a lesser extent, aluminum) are detrimental to health when ingested in food or water or when inhaled. By interacting with heavy metals, gut and food-derived microbes can actively and/or passively modulate (by adsorption and/or sequestration) the bioavailability of these toxins inside the gut. This "intestinal bioremediation" involves the selection of safe microbes specifically able to immobilize metals. We used inductively coupled plasma mass spectrometry to investigate the in vitro ability of 225 bacteria to remove the potentially harmful trace elements lead, cadmium, and aluminum. Interspecies and intraspecies comparisons were performed among the Firmicutes (mostly lactic acid bacteria, including Lactobacillus spp., with some Lactococcus, Pediococcus, and Carnobacterium representatives), Actinobacteria, and Proteobacteria. The removal of a mixture of lead and cadmium was also investigated. Although the objective of the study was not to elucidate the mechanisms of heavy metal removal for each strain and each metal, we nevertheless identified promising candidate bacteria as probiotics for the intestinal bioremediation of Pb(II) and Cd(II).

11.
Gut Microbes ; 13(1): 1-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779491

RESUMO

The gastrointestinal tract is the main ecological niche in which Lactobacillus strains may provide health benefits in mammals. There is currently a need to characterize host-microbe interactions in space and time by tracking these bacteria in vivo. We combined noninvasive whole-body imaging with ex vivo fluorescence confocal microscopy imaging to monitor the impact of intestinal inflammation on the persistence of orally administered Lactobacillus plantarum NCIMB8826 in healthy and inflamed mouse colons. We developed fluorescent L. plantarum strains and demonstrated that mCherry is the best system for in vivo imaging and ex vivo fluorescence confocal microscopy of these bacteria. We also used whole-body imaging to show that this anti-inflammatory, orally administered strain persists for longer and at higher counts in the inflamed colon than in the healthy colon. We confirmed these results by the ex vivo confocal imaging of colons from mice with experimental colitis for 3 days after induction. Moreover, extended orthogonal view projections enabled us to localize individual L. plantarum in sites that differed for healthy versus inflamed guts. In healthy colons, orally administered bacteria were localized in the lumen (in close contact with commensal bacteria) and sometimes in the crypts (albeit very rarely in contact with intestinal cells). The bacteria were observed within and outside the mucus layer. In contrast, L. plantarum bacteria in the inflamed colon were mostly located in the lumen and (in less inflamed areas) within the mucus layer. In more intensely inflamed areas (i.e., where the colon had undergone structural damage), the L. plantarum were in direct contact with damaged epithelial cells. Taken as a whole, our results show that fluorescently labeled L. plantarum can be used to study the persistence of these bacteria in inflamed guts using both noninvasive whole-body imaging and ex vivo fluorescence confocal microscopy.


Assuntos
Colite/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/fisiologia , Animais , Feminino , Fluorescência , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia de Fluorescência , Probióticos
12.
FASEB J ; 34(9): 12615-12633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729971

RESUMO

Although it is known that zinc has several beneficial roles in the context of gut inflammation, the underlying mechanisms have not been extensively characterized. Zinc (Zn) is known to be the primary physiological inducer of the expression of the metallothionein (MT) superfamily of small stress-responsive proteins. The expression of MTs in various tissues is induced or enhanced (including the gastrointestinal tract (GIT)) by a variety of stimuli, including infection and inflammation. However, the MTs' exact role in inflammation is still subject to debate. In order to establish whether or not MTs are the sole vectors in the Zn-based modulation of intestinal inflammation, we used transcriptomic and metagenomic approaches to assess the potential effect of dietary Zn, the mechanisms underlying the MTs' beneficial effects, and the induction of previously unidentified mediators. We found that the expression of endogenous MTs in the mouse GIT was stimulated by an optimized dietary supplementation with Zn. The protective effects of dietary supplementation with Zn were then evaluated in mouse models of chemically induced colitis. The potential contribution of MTs and other pathways was explored via transcriptomic analyses of the ileum and colon in Zn-treated mice. The microbiota's role was also assessed via fecal 16S rRNA sequencing. We found that high-dose dietary supplementation with Zn induced the expression of MT-encoding genes in the colon of healthy mice. We next demonstrated that the Zn diet significantly protected mice in the two models of induced colitis. When comparing Zn-treated and control mice, various genes were found to be differentially expressed in the colon and the ileum. Finally, we found that Zn supplementation did not modify the overall structure of the fecal microbiota, with the exception of (i) a significant increase in endogenous Clostridiaceae, and (ii) some subtle but specific changes at the family and genus levels. Our results emphasize the beneficial effects of excess dietary Zn on the prevention of colitis and inflammatory events in mouse models. The main underlying mechanisms were driven by the multifaceted roles of MTs and the other potential molecular mediators highlighted by our transcriptomic analyses although we cannot rule out contributions by other factors from the host and/or the microbiota.


Assuntos
Colite , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Metalotioneína/metabolismo , Transcriptoma , Zinco/farmacologia , Animais , Colite/tratamento farmacológico , Colite/metabolismo , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Íleo/efeitos dos fármacos , Íleo/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Zinco/administração & dosagem
13.
Cell Rep ; 30(9): 2934-2947.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130898

RESUMO

Secondary bacterial infections often complicate viral respiratory infections. We hypothesize that perturbation of the gut microbiota during influenza A virus (IAV) infection might favor respiratory bacterial superinfection. Sublethal infection with influenza transiently alters the composition and fermentative activity of the gut microbiota in mice. These changes are attributed in part to reduced food consumption. Fecal transfer experiments demonstrate that the IAV-conditioned microbiota compromises lung defenses against pneumococcal infection. In mechanistic terms, reduced production of the predominant short-chain fatty acid (SCFA) acetate affects the bactericidal activity of alveolar macrophages. Following treatment with acetate, mice colonized with the IAV-conditioned microbiota display reduced bacterial loads. In the context of influenza infection, acetate supplementation reduces, in a free fatty acid receptor 2 (FFAR2)-dependent manner, local and systemic bacterial loads. This translates into reduced lung pathology and improved survival rates of double-infected mice. Lastly, pharmacological activation of the SCFA receptor FFAR2 during influenza reduces bacterial superinfection.


Assuntos
Disbiose/microbiologia , Ácidos Graxos Voláteis/biossíntese , Trato Gastrointestinal/microbiologia , Influenza Humana/microbiologia , Pulmão/microbiologia , Infecções Pneumocócicas/complicações , Superinfecção/complicações , Superinfecção/microbiologia , Acetatos/farmacologia , Animais , Disbiose/complicações , Disbiose/virologia , Comportamento Alimentar , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/virologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Infecções Respiratórias/microbiologia
14.
Mol Nutr Food Res ; 64(6): e1901018, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31991062

RESUMO

SCOPE: Type 2 diabetes (T2D) induces organ damage associated with glycation, among other metabolic pathways. While therapeutic strategies have been tested to reduce the formation and impact of glycation products, results remain equivocal. Anti-diabetic therapies using probiotics have been proposed, but their effect upon glycation has not been reported. Here, the effects of the bacterial strain Lactobacillus fermentum ME-3 on glycation and T2D-related complications in a mouse model of T2D are investigated. METHODS & RESULTS: Wild-type LepRdb/+ and diabetic LepRdb/db littermates receive a daily gavage of either water or the probiotic ME-3 strain (1010 CFU). Glycation markers, fructoselysine-derived furosine (FL-furosine) and carboxymethyllysine (CML), are quantified in four major organs and plasma using stable-isotope dilution LC-MS/MS. After 12 weeks of ME-3 treatment, diabetic mice gain less weight and exhibit an apparently improved glucose tolerance. The ME-3 treatment reduces median renal levels of FL-furosine in both genotypes by 12-15%, and renal and pulmonary free-CML in diabetic mice by 30% and 18%, respectively. Attenuated hepatic steatosis and an improved plasma lipid profile are also observed with treatment in both genotypes, while the gut microbiota profile is unchanged. CONCLUSION: L. fermentum ME-3 has therapeutic potential for reducing the formation/accumulation of some glycation products in kidneys and attenuating some common diabetes-related complications.


Assuntos
Complicações do Diabetes/dietoterapia , Produtos Finais de Glicação Avançada/metabolismo , Limosilactobacillus fermentum , Probióticos/farmacologia , Animais , Complicações do Diabetes/metabolismo , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/dietoterapia , Microbioma Gastrointestinal/fisiologia , Hemoglobinas Glicadas/análise , Rim/metabolismo , Lipídeos/sangue , Fígado/metabolismo , Fígado/fisiologia , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Receptores para Leptina/genética , Aumento de Peso/efeitos dos fármacos
15.
Cells ; 8(6)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212833

RESUMO

An original immuno-regulatory strategy against inflammatory bowel diseases based on the use of 28 kDa glutathione S-transferase (P28GST), a unique schistosome protein, was recently proposed. Improvement of intestinal inflammation occurs through restoration of the immunological balance between pro-inflammatory T-helper 1 (Th1) responses and both T-helper 2 (Th2) and regulatory responses. However, detailed mechanisms explaining how P28GST prevents colitis and promotes gut homeostasis remain unknown. Considering the complex interplay between the adaptive and innate immune system and the intestinal microbiota, we raised the question of the possible role of the microbial ecosystem in the anti-inflammatory effects mediated by the helminth-derived P28GST protein. We first analyzed, by 16S rRNA sequencing, the bacterial profiles of mice fecal microbiota at several time points of the P28GST-immunomodulation period prior to trinitrobenzene sulfonic acid (TNBS)-colitis. The influence of gut microbiota in the P28GST-mediated anti-inflammatory effects was then assessed by fecal microbiota transplantation experiments from P28GST-immunized mice to either conventional or microbiota depleted naïve recipient mice. Finally, the experimental data were supplemented by the temporal fecal microbiota compositions of P28GST-treated Crohn's disease patients from a pilot clinical study (NCT02281916). The P28GST administration slightly modulated the diversity and composition of mouse fecal microbiota while it significantly reduced experimental colitis in mice. Fecal microbiota transplantation experiments failed to restore the P28GST-induced anti-inflammatory effects. In Crohn's disease patients, P28GST also induced slight changes in their overall fecal bacterial composition. Collectively, these results provide key elements in both the anti-inflammatory mechanisms and the safe therapeutic use of immunomodulation with such promising helminth-derived molecules.


Assuntos
Anti-Inflamatórios/uso terapêutico , Microbioma Gastrointestinal , Glutationa Transferase/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colite/induzido quimicamente , Colite/microbiologia , Colite/prevenção & controle , Colite/terapia , Doença de Crohn/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Humanos , Imunização , Imunomodulação , Camundongos Endogâmicos BALB C , Fenótipo , Ácido Trinitrobenzenossulfônico
16.
Front Microbiol ; 9: 2899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538693

RESUMO

Lactic acid bacteria (LAB) are representative members of multiple ecosystems on earth, displaying dynamic interactions within animal and plant kingdoms in respect with other microbes. This highly heterogeneous phylogenetic group has coevolved with plants, invertebrates, and vertebrates, establishing either mutualism, symbiosis, commensalism, or even parasitism-like behavior with their hosts. Depending on their location and environment conditions, LAB can be dominant or sometimes in minority within ecosystems. Whatever their origins and relative abundance in specific anatomic sites, LAB exhibit multifaceted ecological and functional properties. While some resident LAB permanently inhabit distinct animal mucosal cavities, others are provided by food and may transiently occupy the gastrointestinal tract. It is admitted that the overall gut microbiome has a deep impact on health and diseases. Here, we examined the presence and the physiological role of LAB in the healthy human and several animal microbiome. Moreover, we also highlighted some dysbiotic states and related consequences for health, considering both the resident and the so-called "transionts" microorganisms. Whether LAB-related health effects act collectively or follow a strain-specificity dogma is also addressed. Besides the highly suggested contribution of LAB to interplay with immune, metabolic, and even brain-axis regulation, the possible involvement of LAB in xenobiotic detoxification processes and metal equilibrium is also tackled. Recent technological developments such as functional metagenomics, metabolomics, high-content screening and design in vitro and in vivo experimental models now open new horizons for LAB as markers applied for disease diagnosis, susceptibility, and follow-up. Moreover, identification of general and more specific molecular mechanisms based on antioxidant, antimicrobial, anti-inflammatory, and detoxifying properties of LAB currently extends their selection and promising use, either as probiotics, in traditional and functional foods, for dedicated treatments and mostly for maintenance of normobiosis and homeostasis.

17.
J Agric Food Chem ; 66(25): 6439-6449, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29873488

RESUMO

The objectives of this work are to address the prebiotic effects of chicory ( Cichorium intybus) together with its possible role in appetite control. We compared nine chicory genotypes in order to determine if variations in the content of metabolites in the roasted roots would lead to modifications in release of satiety hormones and in composition of gut microbiota. To this aim, a 5-week dietary-intervention study was achieved using mice fed with distinct chicory-based preparations. A 16S rRNA gene-based metagenetic analysis of fecal microbiota was performed. In vitro gastrointestinal digestions were performed in order to study the effect of chicory intestinal digests on gut hormone regulation in enteroendocrine cells. Firmicutes/Bacteroidetes ratio and gut bacterial groups, such as Alloprevotella, Blautia, Alistipes, and Oscillibacter, were found to be modulated by chicory. On the other hand, CCK and GLP-1 satiety hormones were demonstrated to be significantly increased by chicory in vitro.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Cichorium intybus/química , Extratos Vegetais/farmacologia , Prebióticos/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cichorium intybus/genética , Cichorium intybus/metabolismo , Digestão/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Camundongos , Extratos Vegetais/metabolismo
18.
Gut Pathog ; 10: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946365

RESUMO

BACKGROUND: Adherent invasive Escherichia coli (AIEC) are suspected to be involved in the pathogenesis of inflammatory bowel diseases. Since AIEC was first described in 1999, despite important progress on its genomic and immune characterizations, some crucial questions remain unanswered, such as whether there exists a natural reservoir, or whether there is asymptomatic carriage. The ECOR collection, including E. coli strains isolated mainly from the gut of healthy humans and animals, constitutes an ideal tool to investigate AIEC prevalence in healthy condition. A total of 61 E. coli strains were examined for characteristics of AIEC. METHODS: The adhesion, invasion and intramacrophage replication capabilities (AIEC phenotype) of 61 intestinal E. coli strains were determined. The absence of virulence-associated diarrheagenic E. coli pathotypes (EPEC, ETEC, EIEC, EHEC, DAEC, EAEC), and uropathogenic E. coli was checked. RESULTS: Out of 61 intestinal strains, 13 (21%) exhibit the AIEC phenotype, 7 are from human origin and 6 are from animal origin. Prevalence of AIEC strains is about 24 and 19% in healthy humans and animals respectively. These strains are highly genetically diverse as they are distributed among the main described phylogroups. Among E. coli strains from the ECOR collection, we also detected strains able to detach I-407 cells. CONCLUSIONS: Our study described for the first time AIEC strains isolated from the feces of healthy humans and animals.

19.
Toxicol In Vitro ; 44: 142-153, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28700953

RESUMO

Hand hygiene plays a key role in nosocomial infection prevention. To achieve users' adherence, products' dermal tolerance is essential. We aimed at making a comparative assessment of skin irritation and phototoxicity of the 3 alcohols commonly used in alcohol-based hand rubs (Ethanol, Propan-2-ol, Propan-1-ol) at 60, 70, 80 or 85% w/w in water or with co-formulates (hydrating, emollient and skin protective agents). In vitro validated OECD methods 439 and 432 were used. For irritation, EpiSkin™ Small Model was the chosen Reconstructed Human Epidermis (RhE). For phototoxicity, co-formulates alone or in mixture with and without alcohol were tested using BALB/c 3T3 cell cultures. Whilst Ethanol and Propan-2-ol could not be differentiated and displayed good skin tolerance profiles, Propan-1-ol based products lead to significant viability impairments of RhE at 60, 70 or 80% and at 60% in the presence of co-formulates. However, these results could not be reproduced in another RhE model. Taking also into account bibliographic data on Propan-1-ol, this suggests that our results are probably related to a lack of specificity of the used RhE. Therefore, it can be relevant in case of significant results to use two different RhE models before performing any classification and/or performing any complementary tests.


Assuntos
Álcoois/toxicidade , Anti-Infecciosos Locais/toxicidade , Pele/efeitos dos fármacos , Animais , Células 3T3 BALB , Dermatite Fototóxica , Higiene das Mãos , Humanos , Técnicas In Vitro , Camundongos , Testes de Irritação da Pele
20.
Hepatobiliary Surg Nutr ; 6(2): 141-143, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28503565
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA