Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
One Health ; 18: 100664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193029

RESUMO

West Nile virus is one of the most widespread mosquito-borne zoonotic viruses, with unique transmission dynamics in various parts of the world. Genomic surveillance has provided important insights in the global patterns of West Nile virus emergence and spread. In Europe, multiple West Nile virus lineages have been isolated, with lineage 1a and 2 being the main lineages responsible for human infections. In contrast to North America, where a single introduction of lineage 1a resulted in the virus establishing itself in a new continent, at least 13 introductions of lineages 1a and 2 have occurred into Europe, which is likely a vast underestimation of the true number of introductions. Historically, lineage 1a was the main lineage circulating in Europe, but since the emergence of lineage 2 in the early 2000s, the latter has become the predominant lineage. This shift in West Nile virus lineage prevalence has been broadly linked to the expansion of the virus into northerly temperate regions, where autochthonous cases in animals and humans have been reported in Germany and The Netherlands. Here, we discuss how genomic analysis has increased our understanding of the epidemiology of West Nile virus in Europe, and we present a global Nextstrain build consisting of publicly available West Nile virus genomes (https://nextstrain.org/community/grubaughlab/WNV-Global). Our results elucidate recent insights in West Nile virus lineage dynamics in Europe, and discuss how expanded programs can fill current genomic surveillance gaps.

2.
Emerg Infect Dis ; 30(2): 396-398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270166

RESUMO

We report fatal West Nile virus (WNV) infection in a 7-year-old mare returning to the United Kingdom from Spain. Case timeline and clustering of virus sequence with recent WNV isolates suggest that transmission occurred in Andalusía, Spain. Our findings highlight the importance of vaccination for horses traveling to WNV-endemic regions.


Assuntos
Febre do Nilo Ocidental , Animais , Feminino , Análise por Conglomerados , Cavalos , Espanha/epidemiologia , Reino Unido/epidemiologia , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/veterinária
4.
Transbound Emerg Dis ; 69(6): 3684-3692, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36217722

RESUMO

Usutu virus (USUV) is an emerging zoonotic arbovirus in Europe, where it primarily impacts Eurasian blackbirds (Turdus merula). For mosquito-borne viruses to persist in temperate areas, transovarial transmission in vectors or overwintering in either hosts or diapausing vectors must occur to facilitate autochthonous transmission. We undertook surveillance of hosts and vectors in 2021 to elucidate whether USUV had overwintered in the United Kingdom (UK) following its initial detection there in 2020. From 175 dead bird submissions, we detected 1 case of USUV infection, in a blackbird, from which a full USUV genome was derived. Using a molecular clock analysis, we demonstrate that the 2021 detection shared a most recent common ancestor with the 2020 Greater London, UK, USUV sequence. In addition, we identified USUV-specific neutralizing antibodies in 10 out of 86 serum samples taken from captive birds at the index site, demonstrating in situ cryptic infection and potential sustained transmission. However, from 4966 mosquitoes, we detected no USUV RNA suggesting that prevalence in the vector community was absent or low during sampling. Combined, these results suggest that USUV overwintered in the UK, thus providing empirical evidence for the continued northward expansion of this vector-borne viral disease. Currently, our detection indicates geographically restricted virus persistence. Further detections over time will be required to demonstrate long-term establishment. It remains unclear whether the UK, and by extension other high-latitude regions, can support endemic USUV infection.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Flavivirus , Aves Canoras , Animais , Mosquitos Vetores , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Reino Unido/epidemiologia
5.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146674

RESUMO

Batai virus (BATV) is a zoonotic orthobunyavirus transmitted by a wide range of mosquito vectors. The virus is distributed throughout Asia and parts of Africa and has been sporadically detected in several European countries. There is increasing evidence that BATV is emerging in Europe as a potential threat to both animal and human health, having been detected in mosquitoes, mammals, birds and humans. In recent years, serological surveillance in cattle, sheep and goats has suggested an antibody prevalence of up to 46% in European livestock, although human serological prevalence remains generally low. However, the recent and continued spread of invasive mosquito species into Europe may facilitate the establishment of competent populations of mosquitoes leading to increased BATV transmission. Migratory birds may also potentially facilitate the emergence of BATV in geographical locations where it was previously undetected. Although BATV has the potential to cause disease in humans and livestock, our understanding of the impact in wild animal populations is extremely limited. Therefore, there is a need for increased surveillance for BATV in mosquitoes, livestock, wild mammals and birds in Europe to understand the true impact of this virus.


Assuntos
Vírus Bunyamwera , Culicidae , Orthobunyavirus , Animais , Bovinos , Europa (Continente)/epidemiologia , Cabras , Humanos , Filogenia , Ovinos
6.
Parasit Vectors ; 15(1): 210, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710580

RESUMO

BACKGROUND: Japanese encephalitis virus (JEV) is the principal cause of mosquito-borne encephalitis in human populations within Asia. If introduced into new geographic areas, it could have further implications for public and animal health. However, potential mosquito vectors for virus transmission have not been fully investigated. The Asian tiger mosquito, Aedes albopictus, has emerged in Europe and is now expanding its geographical range into more northerly latitudes. Culex quinquefasciatus, although absent from Europe, has been detected in Turkey, a country with territory in Europe, and could act as a vector for JEV in other regions. To assess the risk of these invasive species acting as vectors for JEV and therefore potentially contributing to its geographical expansion, we have investigated the vector competence of Ae. albopictus and Cx. quinquefasciatus. METHODS: Two colonised lines of Ae. albopictus (Italy and Spain) and a line of Cx. quinquefasciatus (Tanzania) were compared for susceptibility to infection by oral feeding with JEV strain SA-14, genotype III at 106 PFU/ml and maintained at 25 °C. Specimens were processed at 7 and 14 days post-inoculation (dpi). Rates of infection, dissemination and transmission were assessed through detection of viral RNA by real-time polymerase chain reaction (RT-PCR) in mosquito body, legs and saliva, respectively, at each time point. Where possible, infection and dissemination were confirmed by immunohistochemical (IHC) detection of the JEV envelope protein. RESULTS: Aedes albopictus from Italy showed no susceptibility to infection with JEV strain SA-14. Conversely, Ae. albopictus colonised in Spain was susceptible and 100% of infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Culex quinquefasciatus was highly susceptible to infection as early as 7 dpi and 50% of infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Infection and dissemination were confirmed in Cx. quinquefasciatus by IHC detection of JEV envelope protein in both the mid-gut and salivary glands. CONCLUSIONS: Aedes albopictus from two different locations in Europe range from being susceptible to JEV and capable of transmission through to being resistant. Culex quinquefasciatus also appears highly susceptible; therefore, both species could potentially act as vectors for JEV and facilitate the emergence of JEV into new regions.


Assuntos
Aedes , Culex , Vírus da Encefalite Japonesa (Espécie) , Animais , Suscetibilidade a Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Mosquitos Vetores , RNA Viral/genética
7.
Sci Rep ; 12(1): 10298, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717348

RESUMO

Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Flavivirus , Aves Canoras , Animais , Surtos de Doenças/veterinária , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Mosquitos Vetores , Reino Unido/epidemiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-35627370

RESUMO

Where ticks are found, tick-borne diseases can present a threat to human and animal health. The aetiology of many of these important diseases, including Lyme disease, bovine babesiosis, tick-borne fever and louping ill, have been known for decades whilst others have only recently been documented in the United Kingdom (UK). Further threats such as the importation of exotic ticks through human activity or bird migration, combined with changes to either the habitat or climate could increase the risk of tick-borne disease persistence and transmission. Prevention of tick-borne diseases for the human population and animals (both livestock and companion) is dependent on a thorough understanding of where and when pathogen transmission occurs. This information can only be gained through surveillance that seeks to identify where tick populations are distributed, which pathogens are present within those populations, and the periods of the year when ticks are active. To achieve this, a variety of approaches can be applied to enhance knowledge utilising a diverse range of stakeholders (public health professionals and veterinarians through to citizen scientists). Without this information, the application of mitigation strategies to reduce pathogen transmission and impact is compromised and the ability to monitor the effects of climate change or landscape modification on the risk of tick-borne disease is more challenging. However, as with many public and animal health interventions, there needs to be a cost-benefit assessment on the most appropriate intervention applied. This review will assess the challenges of tick-borne diseases in the UK and argue for a cross-disciplinary approach to their surveillance and control.


Assuntos
Doença de Lyme , Saúde Única , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doenças Transmitidas por Carrapatos/epidemiologia , Reino Unido/epidemiologia
9.
J Med Microbiol ; 71(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35604835

RESUMO

Louping ill virus (LIV) is a single-stranded, positive-sense RNA virus within the genus Flavivirus that is transmitted to vertebrate hosts by bites from infected ticks, the arthropod vector. The virus affects livestock in upland areas of Great Britain and Ireland, resulting in a febrile illness that can progress to fatal encephalitis. Prevention of the disease is facilitated by combining acaricide treatment, land management and vaccination strategies. However, vaccines have been discontinued in recent years. Although rare, LIV can be transmitted to and cause disease in humans. Consequently, LIV infection is a threat to human and veterinary health and can impact on the rural economy.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Carrapatos , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Humanos , Reino Unido
10.
Parasit Vectors ; 14(1): 566, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732254

RESUMO

BACKGROUND: A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. METHODS: Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells. RESULTS: Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7-41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples (n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point. CONCLUSIONS: This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤ 7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations.


Assuntos
Vírus Bunyamwera/fisiologia , Culicidae/virologia , Mosquitos Vetores/virologia , Animais , Vírus Bunyamwera/genética , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Culicidae/imunologia , Europa (Continente) , Feminino , Humanos , Masculino , Mosquitos Vetores/imunologia , Saliva/virologia
11.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696409

RESUMO

Lyssaviruses are an important genus of zoonotic viruses which cause the disease rabies. The United Kingdom is free of classical rabies (RABV). However, bat rabies due to European bat lyssavirus 2 (EBLV-2), has been detected in Daubenton's bats (Myotis daubentonii) in Great Britain since 1996, including a fatal human case in Scotland in 2002. Across Europe, European bat lyssavirus 1 (EBLV-1) is commonly associated with serotine bats (Eptesicus serotinus). Despite the presence of serotine bats across large parts of southern England, EBLV-1 had not previously been detected in this population. However, in 2018, EBLV-1 was detected through passive surveillance in a serotine bat from Dorset, England, using a combination of fluorescent antibody test, reverse transcription-PCR, Sanger sequencing and immunohistochemical analysis. Subsequent EBLV-1 positive serotine bats have been identified in South West England, again through passive surveillance, during 2018, 2019 and 2020. Here, we confirm details of seven cases of EBLV-1 and present similarities in genetic sequence indicating that emergence of EBLV-1 is likely to be recent, potentially associated with the natural movement of bats from the near continent.


Assuntos
Quirópteros/virologia , Lyssavirus/patogenicidade , Animais , Lyssavirus/genética , Raiva/virologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Reino Unido/epidemiologia
12.
Proc Biol Sci ; 288(1951): 20210363, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034519

RESUMO

Emergent infectious diseases are one of the main drivers of species loss. Emergent infection with the microsporidian Nosema bombi has been implicated in the population and range declines of a suite of North American bumblebees, a group of important pollinators. Previous work has shown that phytochemicals found in pollen and nectar can negatively impact parasites in individuals, but how this relates to social epidemiology and by extension whether plants can be effectively used as pollinator disease management strategies remains unexplored. Here, we undertook a comprehensive screen of UK agri-environment scheme (AES) plants, a programme designed to benefit pollinators and wider biodiversity in agricultural settings, for phytochemicals in pollen and nectar using liquid chromatography and mass spectrometry. Caffeine, which occurs across a range of plant families, was identified in the nectar of sainfoin (Onobrychis viciifolia), a component of UK AES and a major global crop. We showed that caffeine significantly reduces N. bombi infection intensity, both prophylactically and therapeutically, in individual bumblebees (Bombus terrestris), and, for the first time, that such effects impact social epidemiology, with colonies reared from wild-caught queens having both lower prevalence and intensity of infection. Furthermore, infection prevalence was lower in foraging bumblebees from caffeine-treated colonies, suggesting a likely reduction in population-level transmission. Combined, these results show that N. bombi is less likely to be transmitted intracolonially when bumblebees consume naturally available caffeine, and that this may in turn reduce environmental prevalence. Consequently, our results demonstrate that floral phytochemicals at ecologically relevant concentrations can impact pollinator disease epidemiology and that planting strategies that increase floral abundance to support biodiversity could be co-opted as disease management tools.


Assuntos
Nosema , Parasitos , Animais , Abelhas , Humanos , Néctar de Plantas , Pólen
13.
Sci Rep ; 11(1): 6133, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731761

RESUMO

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the main cause of viral encephalitis in Asia. However, with changing climate JEV has the potential to emerge in novel temperate regions. Here, we have assessed the vector competence of the temperate mosquito Culex pipiens f. pipiens to vector JEV genotype III at temperatures representative of those experienced, or predicted in the future during the summer months, in the United Kingdom. Our results show that Cx. pipiens is susceptible to JEV infection at both temperatures. In addition, at 25 °C, JEV disseminated from the midgut and was recovered in saliva samples, indicating the potential for transmission. At a lower temperature, 20 °C, following an incubation period of fourteen days, there were reduced levels of JEV dissemination and virus was not detected in saliva samples. The virus present in the bodies of these mosquitoes was restricted to the posterior midgut as determined by microscopy and viable virus was successfully recovered. Apart from the influence on virus dissemination, mosquito mortality was significantly increased at the higher temperature. Overall, our results suggest that temperature is a critical factor for JEV vector competence and infected-mosquito survival. This may in turn influence the vectorial capacity of Cx. pipiens to vector JEV genotype III in temperate areas.


Assuntos
Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/epidemiologia , Mosquitos Vetores/virologia , Animais , Temperatura , Reino Unido
14.
Parasit Vectors ; 13(1): 596, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243297

RESUMO

BACKGROUND: West Nile virus (WNV) is a single-stranded RNA virus that can cause neurological disease in both humans and horses. Due to the movement of competent vectors and viraemic hosts, WNV has repeatedly emerged globally and more recently in western Europe. Within the UK, WNV is a notifiable disease in horses, and vaccines against the virus are commercially available. However, there has been no investigation into the seroprevalence of WNV in the UK equine population to determine the extent of vaccination or to provide evidence of recent infection. METHODS: Equine serum samples were obtained from the Animal and Plant Health Agency's equine testing service between August and November 2019. A total of 988 serum samples were selected for horses resident in South East England. WNV seroprevalence was determined using two enzyme-linked immunosorbent assays (ELISAs) to detect total flavivirus antibodies and WNV-specific immunoglobulin M (IgM) antibodies. Positive IgM results were investigated by contacting the submitting veterinarian to establish the clinical history or evidence of prior vaccination of the horses in question. RESULTS: Within the cohort, 274 samples tested positive for flavivirus antibodies, of which two subsequently tested positive for WNV-specific IgM antibodies. The follow-up investigation established that both horses had been vaccinated prior to serum samples being drawn, which resulted in an IgM-positive response. All the samples that tested positive by competition ELISA were from horses set to be exported to countries where WNV is endemic. Consequently, the positive results were likely due to previous vaccination. In contrast, 714 samples were seronegative, indicating that the majority of the UK equine population may be susceptible to WNV infection. CONCLUSIONS: There was no evidence for cryptic WNV infection in a cohort of horses sampled in England in 2019. All IgM-seropositive cases were due to vaccination; this should be noted for future epidemiological surveys in the event of a disease outbreak, as it is not possible to distinguish vaccinated from infected horses without knowledge of their clinical histories.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Cavalos/sangue , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/imunologia , Animais , Estudos de Coortes , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos , Imunoglobulina G/sangue , Estudos Soroepidemiológicos , Reino Unido , Febre do Nilo Ocidental/sangue , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
15.
Euro Surveill ; 25(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33063656

RESUMO

In August 2020, as part of a long-term disease surveillance programme, Usutu virus was detected in five Eurasian blackbirds (Turdus merula) and one house sparrow (Passer domesticus) from Greater London, England. This was initially detected by reverse transcription-PCR and was confirmed by virus isolation and by immunohistochemical detection of flavivirus in tissues. Phylogenetic analysis identified Usutu virus African 3.2 lineage, which is prevalent in the Netherlands and Belgium, suggesting a potential incursion from mainland Europe.


Assuntos
Doenças das Aves/epidemiologia , Surtos de Doenças , Flavivirus/isolamento & purificação , Vigilância de Evento Sentinela/veterinária , Animais , Animais Selvagens , Aves , Flavivirus/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência , Reino Unido/epidemiologia
16.
Proc Biol Sci ; 287(1932): 20200935, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32752985

RESUMO

Sulfoxaflor is a globally important novel insecticide that can have negative impacts on the reproductive output of bumblebee (Bombus terrestris) colonies. However, it remains unclear as to which life-history stage is critically affected by exposure. One hypothesis is that sulfoxaflor exposure early in the colony's life cycle can impair larval development, reducing the number of workers produced and ultimately lowering colony reproductive output. Here we assess the influence of sulfoxaflor exposure on bumblebee larval mortality and growth both when tested in insolation and when in combination with the common fungal parasite Nosema bombi, following a pre-registered design. We found no significant impact of sulfoxaflor (5 ppb) or N. bombi exposure (50 000 spores) on larval mortality when tested in isolation but found an additive, negative effect when larvae received both stressors in combination. Individually, sulfoxaflor and N. bombi exposure each impaired larval growth, although the impact of combined exposure fell significantly short of the predicted sum of the individual effects (i.e. they interacted antagonistically). Ultimately, our results suggest that colony-level consequences of sulfoxaflor exposure for bumblebees may be mediated through direct effects on larvae. As sulfoxaflor is licensed for use globally, our findings highlight the need to understand how novel insecticides impact non-target insects at various stages of their development.


Assuntos
Abelhas/fisiologia , Inseticidas/toxicidade , Nosema , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais
17.
Front Vet Sci ; 7: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118054

RESUMO

Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.

18.
J Exp Biol ; 223(Pt 6)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32107305

RESUMO

Immune systems provide a key defence against diseases. However, they are not a panacea and so both vertebrates and invertebrates co-opt naturally occurring bioactive compounds to treat themselves against parasites and pathogens. In vertebrates, this co-option is complex, with pharmacodynamics leading to differential effects of treatment at different life stages, which may reflect age-linked differences in the immune system. However, our understanding of pharmacodynamics in invertebrates is almost non-existent. Critically, this knowledge may elucidate broad parallels across animals in regard to the requirement for the co-option of bioactive compounds to ameliorate disease. Here, we used biochanin A, an isoflavone found in the pollen of red clover (Trifolium pratense), to therapeutically treat Nosema bombi (Microsporidia) infection in bumblebee (Bombus terrestris) larvae and adults, and thus examine age-linked pharmacodynamics in an invertebrate. Therapeutic treatment of larvae with biochanin A did not reduce the infection intensity of N. bombi in adults. In contrast, therapeutic treatment of adults did reduce the infection intensity of N. bombi This transition in parasite resistance to bioactive compounds mirrors the age-linked pharmacodynamics of vertebrates. Understanding how different life-history stages respond to therapeutic compounds will provide novel insights into the evolution of foraging and self-medication behaviour in natural systems more broadly.


Assuntos
Nosema , Animais , Abelhas , Vertebrados
19.
Microbiol Resour Announc ; 8(41)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601661

RESUMO

Here, we report the first complete genome of a bovine ephemeral fever virus (BEFV) isolate from an infected bovine in Israel. The genome shares 95.3% identity with a Turkish genomic sequence but contains α3 and γ open reading frames that are truncated compared to those of existing BEFV genome sequences.

20.
J Invertebr Pathol ; 148: 81-85, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28601566

RESUMO

Disease transmission networks are key for understanding parasite epidemiology. Within the social insects, structured contact networks have been suggested to limit the spread of diseases to vulnerable members of their society, such as the queen or brood. However, even these complex social structures do not provide complete protection, as some diseases, which are transmitted by workers during brood care, can still infect the brood. Given the high rate of feeding interactions that occur in a social insect colony, larvae may act as disease transmission hubs. Here we use the bumblebee Bombus terrestris and its parasite Crithidia bombi to determine the role of brood in bumblebee disease transmission networks. Larvae that were artificially inoculated with C. bombi showed no signs of infection seven days after inoculation. However, larvae that received either an artificial inoculation or a contaminated feed from brood-caring workers were able to transmit the parasite to naive workers. These results suggest that the developing brood is a potential route of intracolonial disease transmission and should be included when considering social insect disease transmission networks.


Assuntos
Abelhas/parasitologia , Crithidia/patogenicidade , Interações Hospedeiro-Parasita , Animais , Larva/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA