Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunol Rev ; 323(1): 40-53, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411263

RESUMO

The ability of cells of the immune system to acquire features such as increased longevity and enhanced secondary responses was long thought to be restricted to cells of the adaptive immune system. Natural killer (NK) cells have challenged this notion by demonstrating that they can also gain adaptive features. This has been observed in both humans and mice during infection with cytomegalovirus (CMV). The generation of adaptive NK cells requires antigen-specific recognition of virally infected cells through stimulatory NK receptors. These receptors lack the ability to signal on their own and rather rely on adaptor molecules that contain ITAMs for driving signals. Here, we highlight our understanding of how these receptors influence the production of adaptive NK cells and propose areas in the field that merit further investigation.


Assuntos
Imunidade Adaptativa , Infecções por Citomegalovirus , Células Matadoras Naturais , Receptores de Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Humanos , Animais , Infecções por Citomegalovirus/imunologia , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Citomegalovirus/imunologia , Camundongos
2.
Nat Struct Mol Biol ; 29(6): 537-548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35655098

RESUMO

Every voltage-gated ion channel (VGIC) has a pore domain (PD) made from four subunits, each comprising an antiparallel transmembrane helix pair bridged by a loop. The extent to which PD subunit structure requires quaternary interactions is unclear. Here, we present crystal structures of a set of bacterial voltage-gated sodium channel (BacNaV) 'pore only' proteins that reveal a surprising collection of non-canonical quaternary arrangements in which the PD tertiary structure is maintained. This context-independent structural robustness, supported by molecular dynamics simulations, indicates that VGIC-PD tertiary structure is independent of quaternary interactions. This fold occurs throughout the VGIC superfamily and in diverse transmembrane and soluble proteins. Strikingly, characterization of PD subunit-binding Fabs indicates that non-canonical quaternary PD conformations can occur in full-length VGICs. Together, our data demonstrate that the VGIC-PD is an autonomously folded unit. This property has implications for VGIC biogenesis, understanding functional states, de novo channel design, and VGIC structural origins.


Assuntos
Canais de Sódio Disparados por Voltagem , Conformação Molecular , Simulação de Dinâmica Molecular , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
3.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35320345

RESUMO

Natural killer (NK) cells can detect antibody-coated cells through recognition by the CD16 Fc receptor. The importance of CD16 in human NK cell biology has long been appreciated, but how CD16 functions in mouse NK cells remains poorly understood. Here, we report drastic differences between human and mouse CD16 functions in NK cells. We demonstrate that one of the adaptor molecules that CD16 associates with and signals through, CD3ζ, plays a critical role in these functional differences. Using a systematic approach, we demonstrate that residues in the transmembrane domain of the mouse CD3ζ molecule prevent efficient complex formation with mouse CD16, thereby dampening receptor function. Mutating these residues in mouse CD3ζ to those encoded by human CD3ζ resulted in rescue of CD16 receptor function. We reveal that the mouse CD3ζ transmembrane domain adopts a tightly packed confirmation, preventing association with CD16, whereas human CD3ζ adopts a versatile configuration that accommodates receptor assembly.


Assuntos
Complexo CD3 , Células Matadoras Naturais , Receptores de IgG , Animais , Complexo CD3/genética , Proteínas Ligadas por GPI , Humanos , Camundongos , Receptores Fc , Receptores de IgG/genética , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155106

RESUMO

Multicomponent immune receptors are essential complexes in which distinct ligand-recognition and signaling subunits are held together by interactions between acidic and basic residues of their transmembrane helices. A 2:1 acidic-to-basic motif in the transmembrane domains of the subunits is necessary and sufficient to assemble these receptor complexes. Here, we study a prototype for these receptors, a DAP12-NKG2C 2:1 heterotrimeric complex, in which the two DAP12 subunits each contribute a single transmembrane Asp residue, and the NKG2C subunit contributes a Lys to form the complex. DAP12 can also associate with 20 other subunits using a similar motif. Here, we use molecular-dynamics simulations to understand the basis for the high affinity and diversity of interactions in this group of receptors. Simulations of the transmembrane helices with differing protonation states of the Asp-Asp-Lys triad identified a structurally stable interaction in which a singly-protonated Asp-Asp pair forms a hydrogen-bonded carboxyl-carboxylate clamp that clasps onto a charged Lys side chain. This polar motif was also supported by density functional theory and a Protein Data Bank-wide search. In contrast, the helices are dynamic at sites distal to the stable carboxyl-carboxylate clamp motif. Such a locally stable but globally dynamic structure is well suited to accommodate the sequence and structural variations in the transmembrane helices of multicomponent receptors, which mix and match subunits to create combinatorial functional diversity from a limited number of subunits. It also supports a signaling mechanism based on multisubunit clustering rather than propagation of rigid conformational changes through the membrane.


Assuntos
Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Motivos de Aminoácidos , Bases de Dados de Proteínas , Mutação/genética , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
5.
J Am Chem Soc ; 140(20): 6226-6230, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29762017

RESUMO

DNA hybridization onto DNA-functionalized nanoparticle surfaces (e.g., in the form of a spherical nucleic acid (SNA)) is known to be enhanced relative to hybridization free in solution. Surprisingly, via isothermal titration calorimetry, we reveal that this enhancement is enthalpically, as opposed to entropically, dominated by ∼20 kcal/mol. Coarse-grained molecular dynamics simulations suggest that the observed enthalpic enhancement results from structurally confining the DNA on the nanoparticle surface and preventing it from adopting enthalpically unfavorable conformations like those observed in the solution case. The idea that structural confinement leads to the formation of energetically more stable duplexes is evaluated by decreasing the degree of confinement a duplex experiences on the nanoparticle surface. Both experiment and simulation confirm that when the surface-bound duplex is less confined, i.e., at lower DNA surface density or at greater distance from the nanoparticle surface, its enthalpy of formation approaches the less favorable enthalpy of duplex formation for the linear strand in solution. This work provides insight into one of the most important and enabling properties of SNAs and will inform the design of materials that rely on the thermodynamics of hybridization onto DNA-functionalized surfaces, including diagnostic probes and therapeutic agents.


Assuntos
DNA/química , Ácidos Nucleicos Imobilizados/química , Nanopartículas/química , Termodinâmica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico/métodos
8.
ACS Nano ; 5(5): 3811-6, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21469653

RESUMO

Compositional and interfacial control in heterojunction thin films is critical to the performance of complex devices that separate or combine charges. For high performance, these applications require epitaxially matched interfaces, which are difficult to produce. Here, we present a new architecture for producing low-strain, single-crystalline heterojunctions using self-assembly and in-film cation exchange of colloidal nanorods. A systematic set of experiments demonstrates a cation exchange procedure that lends precise control over compositional depths in a monolayer film of vertically aligned nanorods. Compositional changes are reflected by electrical performance as rectification is induced, quenched, and reversed during cation exchange from CdS to Cu(2)S to PbS. As an additional benefit, we achieve this single-crystal architecture via an inherently simple and low-temperature wet chemical process, which is general to a variety of chemistries. This permits ensemble measurement of transport through a colloidal nanoparticle film with no interparticle charge hopping.


Assuntos
Cristalização/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA