Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 444: 138684, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38359701

RESUMO

A research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.), mainly produced in southern Tuscany-(Allium ampeloprasum). The isotopic composition allowed the product to be geographically characterized. Flavonoids, like (+)-catechin, cinnamic acids, quercetin glycosides were identified. The samples showed also a significant amount of dipeptides, sulphur-containing metabolites and glutathione, the latter of which could be considered a molecular marker of the analyzed elephant garlic. For nutraceutical profiling to reach quality labels, extracts were investigated in specific biological assays, displaying interesting vasorelaxant properties in rat aorta by mediating nitric oxide release from the endothelium and exhibited positive inotropic and negative chronotropic effects in rat perfused heart.


Assuntos
Allium , Alho , Animais , Ratos , Alho/química , Allium/química , Cebolas/química , Antioxidantes/análise , Suplementos Nutricionais , Itália
2.
ACS Infect Dis ; 10(3): 1000-1022, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38367280

RESUMO

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Assuntos
Antimaláricos , Malária Falciparum , Tiazóis , Humanos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina , Antimaláricos/farmacologia , Antimaláricos/química
3.
Gels ; 9(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37754414

RESUMO

Despite process similarities, distinctive manufacturing technologies offer hyaluronic acid dermal fillers with different in vitro physicochemical and rheological properties due to peculiar crosslinked hydrogel networks. A better understanding of dermal filler properties could provide specific clinical indications and expectations with more accurate performance correlations. In this study, with an emphasis on the degree of modification, hyaluronic acid concentration and molecular weight, these process parameters were able to modulate dermal filler properties, especially rheology. Moreover, an extensive characterization of commercial hyaluronic acid injectables of the Hyal System line was described to present product properties and help to elucidate related clinical effects. Standardized methodologies were applied to correlate in vitro parameters with feasible clinical indications. In view of an optimized dermal filler design, the results of the extrudability measurements allowed the quantification of the effect of hydrogel composition, rheological properties and needle size on injectability. Composition, dynamic viscosity and needle size showed an impactful influence on hydrogel extrudability. Finally, the positive influence of 200 KDa hyaluronic acid in comparison to fragments of ether-crosslinked hyaluronic acid on fibroblast recognition were shown with a migration assay.

4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077415

RESUMO

Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with pan-HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is. In addition, polypharmacological approaches have been explored to achieve a synergistic action on multi-factorial diseases or to enhance the drug efficacy. In this frame, proteolysis-targeting chimeras (PROTACs) might be regarded as a dual-targeting approach for attaining HDAC8 proteasomal degradation. This review highlights the most relevant and recent advances relative to HDAC8 validation in various diseases, providing a snapshot of the current selective HDAC8is, with a focus on polyfunctional modulators.


Assuntos
Neoplasias , Proteínas Repressoras , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551034

RESUMO

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Animais , Sobrevivência Celular , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Camundongos , Ratos , Proteínas Repressoras , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo
6.
J Virol Methods ; 271: 113680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202851

RESUMO

Onion yellow dwarf virus (OYDV) is one of the most important viral pathogens of onion. In particular, on 'Rossa di Tropea' onion, granted with Protected Geographical Indication (PGI) trademarks, this pathogen represents the most limiting biotic stress in terms of spread, severity of symptoms and damage, and its detection is necessary to preserve high quality standards and avoid yield losses. A reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed for detection of OYDV. The specificity, sensitivity, repeatability and reproducibility of the assay were validated according to EPPO standard PM7/98 (2). Diagnostic specificity, diagnostic sensitivity and diagnostic accuracy were determined in both leaf and bulb tissues. To enhance the feasibility of a LAMP-based method for field diagnosis, several nucleic acid extraction methods were compared to simplify sample preparation. The results showed the reliability of the method for OYDV detection, with a limit of detection (LOD) comparable to real time reverse transcription polymerase chain reaction (RT-qPCR). The ease of sample preparation, and the more than acceptable LOD, indicated that the RT-LAMP assay could be used in plant pathology laboratories with limited facilities and resources, as well as directly in the field. This work was carried out in the frame of "SI.ORTO" project.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Potyvirus/isolamento & purificação , Transcrição Reversa , Temperatura , Primers do DNA/genética , Limite de Detecção , Cebolas/virologia , Folhas de Planta/virologia , Raízes de Plantas/virologia , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Phytochemistry ; 89: 104-13, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23453910

RESUMO

Exhaustive chromatographic separation of the chloroform portion of the ethanolic extract obtained from Paulownia tomentosa (Thunb). Steud. (Paulowniaceae) fruits has led to isolation of ten C-6 geranylated flavanones tomentodiplacone C-I and mimulone C-E, featured by 3'-methoxy and 4'-hydroxy or 4'-hydroxy substitution of the B-ring of the flavonoid, respectively. The structures of these compounds were determined by using mass spectrometry (including HRMS) and 1D and 2D NMR spectroscopy. The absolute configurations of the compounds at C-2 were determined using circular dichroism. The obtained compounds showed the presence of a geranyl moiety functionalized by a carbonyl, hydroxyl or methoxyl group, or by formation of tetrahydrofuran or fused-pyrane ring, respectively. All of the flavanones described were isolated for the first time from a natural source. The antibacterial activities of selected compounds isolated along with the previously isolated geranylated flavanones were evaluated against a common panel of microbes and MRSA strains. The selected isolated compounds were tested for their ability to affect eukaryotic translation initiation via dual-luciferase reporter assay (firefly and renilla).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Flavanonas/química , Flavanonas/farmacologia , Frutas/química , Magnoliopsida/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Genes Reporter/genética , Luciferases/genética , Testes de Sensibilidade Microbiana , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos
8.
J Chem Ecol ; 37(6): 582-91, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21607717

RESUMO

Plant volatile compounds induced by herbivore attack have been demonstrated to provide a signal to herbivore enemies such as parasitic wasps that use these volatiles to locate their hosts. However, in addition to herbivore-induced volatiles, plants often release volatiles constitutively. We assessed the interaction between herbivore-induced and constitutively released volatiles of maize in the attraction of the wasp Cotesia marginiventris that parasitizes herbivorous lepidopteran larvae feeding on maize. Experiments were carried out with olfactometers in which the sources of volatiles were transgenic Arabidopsis thaliana plants overexpressing maize sesquiterpene synthases that produce blends of herbivore-induced or constitutive compounds. We found that the constitutive volatiles of maize terpene synthase 8 (TPS8) were attractive to C. marginiventris, just like the herbivore-induced volatiles of TPS10 studied earlier. A mixture of both the TPS8 and TPS10 volatile blends, however, was more effective in parasitoid attraction, indicating that constitutively released sesquiterpenes enhance the attraction of those induced by herbivores. While C. marginiventris did not distinguish among the volatiles of TPS8, TPS10, nor those of another maize sesquiterpene synthase (TPS5), when these blends were combined, their attractiveness to the wasp appeared to increase with the complexity of the blend.


Assuntos
Mariposas/parasitologia , Oviposição/efeitos dos fármacos , Feromônios/farmacologia , Sesquiterpenos/farmacologia , Vespas/fisiologia , Zea mays/química , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacologia , Feminino , Odorantes , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Compostos Orgânicos Voláteis/farmacologia , Zea mays/enzimologia , Zea mays/genética
9.
J Chem Ecol ; 35(7): 833-43, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19568812

RESUMO

Arbuscular mycorrhizal fungi can strongly influence the metabolism of their host plant, but their effect on plant defense mechanisms has not yet been thoroughly investigated. We studied how the principal direct defenses (iridoid glycosides) and indirect defenses (volatile organic compounds) of Plantago lanceolata L. are affected by insect herbivory and mechanical wounding. Volatile compounds were collected and quantified from mycorrhizal and non-mycorrhizal P. lanceolata plants that underwent three different treatments: 1) insect herbivory, 2) mechanical wounding, or 3) no damage. The iridoids aucubin and catalpol were extracted and quantified from the same plants. Emission of terpenoid volatiles was significantly higher after insect herbivory than after the other treatments. However, herbivore-damaged mycorrhizal plants emitted lower amounts of sesquiterpenes, but not monoterpenes, than herbivore-damaged non-mycorrhizal plants. In contrast, mycorrhizal infection increased the emission of the green leaf volatile (Z)-3-hexenyl acetate in untreated control plants, making it comparable to emission from mechanically wounded or herbivore-damaged plants whether or not they had mycorrhizal associates. Neither mycorrhization nor treatment had any influence on the levels of iridoid glycosides. Thus, mycorrhizal infection did not have any effect on the levels of direct defense compounds measured in P. lanceolata. However, the large decline in herbivore-induced sesquiterpene emission may have important implications for the indirect defense potential of this species.


Assuntos
Micorrizas/metabolismo , Plantago/química , Acetatos/análise , Acetatos/metabolismo , Animais , Glucosídeos/análise , Glucosídeos/metabolismo , Interações Hospedeiro-Parasita , Glucosídeos Iridoides , Iridoides/análise , Iridoides/metabolismo , Plantago/metabolismo , Plantago/microbiologia , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Spodoptera/efeitos dos fármacos , Simbiose , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA