Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 41(1): 309, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271379

RESUMO

BACKGROUND: Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. METHODS: Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. RESULTS: We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. CONCLUSIONS: We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Imunoterapia , Linfócitos T , Linhagem Celular Tumoral , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Oncol ; 10(6): 938-48, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27103110

RESUMO

The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable to the original MvDN30 in vitro, acting as full Met antagonists, impairing Met phosphorylation and activation of downstream signaling pathways. As a consequence, Met-mediated biological responses were inhibited, including anchorage-dependent and -independent cell growth. In vivo DCD-1 and DCD-2 showed a pharmacokinetic profile significantly improved over the original MvDN30, doubling the circulating half-life and reducing the clearance. In pre-clinical models of cancer, generated by injection of tumor cells or implant of patient-derived samples, systemic administration of the engineered molecules inhibited the growth of Met-addicted tumors.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Colo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Células A549 , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Células HEK293 , Meia-Vida , Humanos , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Mol Cell Cardiol ; 93: 84-97, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26924269

RESUMO

Cardiac hypertrophy is a major risk factor for heart failure. Hence, its attenuation represents an important clinical goal. Erk1,2 signalling is pivotal in the cardiac response to stress, suggesting that its inhibition may be a good strategy to revert heart hypertrophy. In this work, we unveiled the events associated with cardiac hypertrophy by means of a transgenic model expressing activated Met receptor. c-Met proto-oncogene encodes for the tyrosine kinase receptor of Hepatocyte growth factor and is a strong inducer of Ras-Raf-Mek-Erk1,2 pathway. We showed that three weeks after the induction of activated Met, the heart presents a remarkable concentric hypertrophy, with no signs of congestive failure and preserved contractility. Cardiac enlargement is accompanied by upregulation of growth-regulating transcription factors, natriuretic peptides, cytoskeletal proteins, and Extracellular Matrix remodelling factors (Timp1 and Pai1). At a later stage, cardiac hypertrophic remodelling results into heart failure with preserved systolic function. Prevention trial by suppressing activated Met showed that cardiac hypertrophy is reversible, and progression to heart failure is prevented. Notably, treatment with Pimasertib, Mek1 inhibitor, attenuates cardiac hypertrophy and remodelling. Our results suggest that modulation of Erk1.2 signalling may constitute a new therapeutic approach for treating cardiac hypertrophies.


Assuntos
Cardiomegalia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Niacinamida/análogos & derivados , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Cardiomegalia/diagnóstico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Linhagem Celular , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Camundongos , Camundongos Transgênicos , Niacinamida/farmacologia , Fenótipo , Proteínas Proto-Oncogênicas c-met/genética , Remodelação Ventricular/genética
4.
Mol Oncol ; 9(9): 1760-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26119717

RESUMO

An awesome number of experimental and clinical evidences indicate that constitutive activation of the Met oncogenic receptor plays a critical role in the progression of cancer toward metastasis and/or resistance to targeted therapies. While mutations are rare, the common mechanism of Met activation is overexpression, either by gene amplification ('addiction') or transcriptional activation ('expedience'). In the first instance ligand-independent kinase activation plays a major role in sustaining the transformed phenotype. Anti-Met antibodies directed against the receptor binding site behave essentially as ligand (Hepatocyte Growth Factor, HGF) antagonists and are ineffective to counteract ligand-independent activation. The monovalent chimeric MvDN30 antibody fragment, PEGylated to extend its half-life, binds the fourth IPT domain and induces 'shedding' of the Met extracellular domain, dramatically reducing both the number of receptors on the surface and their phosphorylation. Downstream signaling is thus inhibited, both in the absence or in the presence of the ligand. In vitro, MvDN30 is a strong inhibitor not only of ligand-dependent invasive growth, sustained by both paracrine and autocrine HGF, but notably, also of ligand-independent growth of 'Met-addicted' cells. In immunocompromised mice, lacking expression of Hepatocyte Growth Factor cross-reacting with the human receptor - thus providing, by definition, a model of 'ligand-independent' Met activation - PEGylated MvDN30 impairs growth of Met 'addicted' human gastric carcinoma cells. In a Met-amplified patient-derived colo-rectal tumor (xenopatient) MvDN30-PEG overcomes the resistance to EGFR targeted therapy (Cetuximab). The PEGylated MvDN30 is thus a strong candidate for targeting tumors sustained by ligand-independent Met oncogenic activation.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/farmacologia , Fragmentos de Imunoglobulinas/uso terapêutico , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo
5.
J Mol Med (Berl) ; 92(1): 65-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24013625

RESUMO

UNLABELLED: Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells-transplanted either subcutaneously or orthotopically in nude mice-resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30. KEY MESSAGE: Gene transfer allows the continuous in vivo production of therapeutic Fab fragments. Mv-DN30 is an excellent tool for the treatment of Met-driven cancers. Mv-DN30 gene therapy represents an innovative route for Met targeting.


Assuntos
Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Transdução Genética , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Res ; 68(22): 9176-83, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010889

RESUMO

Gene therapy provides a still poorly explored opportunity to treat cancer by "active" immunotherapy as it enables the transfer of genes encoding antibodies directed against specific oncogenic proteins. By a bidirectional lentiviral vector, we transferred the cDNA encoding the heavy and light chains of a monoclonal anti-Met antibody (DN-30) to epithelial cancer cells. In vitro, the transduced cells synthesized and secreted correctly assembled antibodies with the expected high affinity, inducing down-regulation of the Met receptor and strong inhibition of the invasive growth response. The inhibitory activity resulted (a) from the interference of the antibody with the Met receptor intracellular processing ("cell autonomous activity," in cis) and (b) from the antibody-induced cleavage of Met expressed at the cell surface ("bystander effect," in trans). The monoclonal antibody gene transferred into live animals by systemic administration or by local intratumor delivery resulted in substantial inhibition of tumor growth. These data provide proof of concept both for targeting the Met receptor and for a gene transfer-based immunotherapy strategy.


Assuntos
Anticorpos Monoclonais/genética , Terapia Genética , Neoplasias/terapia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores de Fatores de Crescimento/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Neoplasias/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-met , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA