Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 44(2): 252-271, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37737093

RESUMO

How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.


Assuntos
Glicemia , Glucose , Hiperglicemia , Animais , Camundongos , Vênulas/metabolismo , Glicemia/metabolismo , Inflamação/metabolismo , Hiperglicemia/metabolismo , Plaquetas/metabolismo , Neutrófilos/metabolismo , Endotélio Vascular/metabolismo
2.
Elife ; 112022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142608

RESUMO

Vibrissa sensory inputs play a central role in driving rodent behavior. These inputs transit through the sensory trigeminal nuclei, which give rise to the ascending lemniscal and paralemniscal pathways. While lemniscal projections are somatotopically mapped from brainstem to cortex, those of the paralemniscal pathway are more widely distributed. Yet the extent and topography of paralemniscal projections are unknown, along with the potential role of these projections in controlling behavior. Here, we used viral tracers to map paralemniscal projections. We find that this pathway broadcasts vibrissa-based sensory signals to brainstem regions that are involved in the regulation of autonomic functions and to forebrain regions that are involved in the expression of emotional reactions. We further provide evidence that GABAergic cells of the Kölliker-Fuse nucleus gate trigeminal sensory input in the paralemniscal pathway via a mechanism of presynaptic or extrasynaptic inhibition.


Assuntos
Vias Aferentes/fisiologia , Tronco Encefálico/fisiologia , Sistema Límbico/fisiologia , Núcleos do Trigêmeo/fisiologia , Vibrissas/fisiologia , Animais , Eletrofisiologia , Optogenética , Ratos , Ratos Long-Evans
3.
Curr Biol ; 31(18): 4111-4119.e4, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34302743

RESUMO

In their pioneering study on dopamine release, Romo and Schultz speculated "...that the amount of dopamine released by unmodulated spontaneous impulse activity exerts a tonic, permissive influence on neuronal processes more actively engaged in preparation of self-initiated movements...."1 Motivated by the suggestion of "spontaneous impulses," as well as by the "ramp up" of dopaminergic neuronal activity that occurs when rodents navigate to a reward,2-5 we asked two questions. First, are there spontaneous impulses of dopamine that are released in cortex? Using cell-based optical sensors of extrasynaptic dopamine, [DA]ex,6 we found that spontaneous dopamine impulses in cortex of naive mice occur at a rate of ∼0.01 per second. Next, can mice be trained to change the amplitude and/or timing of dopamine events triggered by internal brain dynamics, much as they can change the amplitude and timing of dopamine impulses based on an external cue?7-9 Using a reinforcement learning paradigm based solely on rewards that were gated by feedback from real-time measurements of [DA]ex, we found that mice can volitionally modulate their spontaneous [DA]ex. In particular, by only the second session of daily, hour-long training, mice increased the rate of impulses of [DA]ex, increased the amplitude of the impulses, and increased their tonic level of [DA]ex for a reward. Critically, mice learned to reliably elicit [DA]ex impulses prior to receiving a reward. These effects reversed when the reward was removed. We posit that spontaneous dopamine impulses may serve as a salient cognitive event in behavioral planning.


Assuntos
Dopamina , Recompensa , Animais , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Aprendizagem/fisiologia , Camundongos , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA