Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Math Biol ; 88(5): 53, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565734

RESUMO

The use of therapeutic agents is a critical option to manage wildlife disease, but their implementation is usually spatially constrained. We seek to expand knowledge around the effectiveness of management of environmentally-transmitted Sarcoptes scabiei on a host population, by studying the effect of a spatially constrained treatment regime on disease dynamics in the bare-nosed wombat Vombatus ursinus. A host population of wombats is modelled using a system of non-linear partial differential equations, a spatially-varying treatment regime is applied to this population and the dynamics are studied over a period of several years. Treatment could result in mite decrease within the treatment region, extending to a lesser degree outside, with significant increases in wombat population. However, the benefits of targeted treatment regions within an environment are shown to be dependent on conditions at the start (endemic vs. disease free), as well as on the locations of these special regions (centre of the wombat population or against a geographical boundary). This research demonstrates the importance of understanding the state of the environment and populations before treatment commences, the effects of re-treatment schedules within the treatment region, and the transient large-scale changes in mite numbers that can be brought about by sudden changes to the environment. It also demonstrates that, with good knowledge of the host-pathogen dynamics and the spatial terrain, it is possible to achieve substantial reduction in mite numbers within the target region, with increases in wombat numbers throughout the environment.


Assuntos
Marsupiais , Escabiose , Animais , Escabiose/tratamento farmacológico , Escabiose/epidemiologia , Sarcoptes scabiei , Animais Selvagens
2.
J Biol Dyn ; 16(1): 144-159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35404769

RESUMO

Understanding the spread of pathogens through the environment is critical to a fuller comprehension of disease dynamics. However, many mathematical models of disease dynamics ignore spatial effects. We seek to expand knowledge around the interaction between the bare-nosed wombat (Vombatus ursinus) and sarcoptic mange (etiologic agent Sarcoptes scabiei), by extending an aspatial mathematical model to include spatial variation. S. scabiei was found to move through our modelled region as a spatio-temporal travelling wave, leaving behind pockets of localized host extinction, consistent with field observations. The speed of infection spread was also comparable with field research. Our model predicts that the inclusion of spatial dynamics leads to the survival and recovery of affected wombat populations when an aspatial model predicts extinction. Collectively, this research demonstrates how environmentally transmitted S. scabiei can result in travelling wave dynamics, and that inclusion of spatial variation reveals a more resilient host population than aspatial modelling approaches.


Assuntos
Marsupiais , Escabiose , Animais , Modelos Biológicos , Sarcoptes scabiei , Escabiose/epidemiologia
3.
J Theor Biol ; 486: 110072, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31706913

RESUMO

The geographic niches of many species are dramatically changing as a result of environmental and anthropogenic impacts such as global climate change and the introduction of invasive species. In particular, genetically compatible subspecies that were once geographically separated are being reintroduced to one another. This is of concern for conservation, where rare or threatened subspecies could be bred out by hybridising with their more common relatives, and for commercial interests, where the stock or quality of desirable harvested species could be compromised. It is also relevant to disease ecology, where disease transmission is heterogeneous among subspecies and hybridisation may affect the rate and spatial spread of disease. We develop and investigate a mathematical model to combine competitive effects via the Lotka-Volterra model with hybridisation effects via mate choice. The species complex is structured into two classes: a subspecies of interest (named x), and other subspecies including any hybrids produced (named y). We show that in the absence of limit cycles the model has four possible equilibrium outcomes, representing every combination: total extinction, x-dominance (y extinct), y-dominance (x extinct), and at most a single coexistence equilibrium. We give conditions for which limit cycles cannot exist, then further show that the "total extinction" equilibrium is always unstable, that y-dominance is always stable, and that the other equilibria have stability depending on the model parameters. We demonstrate that both x-dominance and coexistence are achievable under a wide range of parameter values and initial conditions, which corresponds with empirical evidence of known competing-hybridising systems. We then briefly examine bifurcation behaviour. In particular, we note that a subcritical bifurcation is possible in which a "catastrophic" transition from x-dominance to y-dominance can occur, representing an invasion event. Finally, we briefly examine the common complication of time-varying carrying capacity, showing that such a case can make coexistence more likely.


Assuntos
Ecossistema , Modelos Biológicos , Conservação dos Recursos Naturais , Ecologia , Espécies Introduzidas
4.
J Theor Biol ; 462: 466-474, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30502410

RESUMO

Some of the most important wildlife diseases involve environmental transmission, with disease control attempted via treatments that induce temporary pathogen resistance among hosts. However, theoretical explanations of such circumstances remain few. A mathematical model is proposed and investigated to analyse the dynamics and treatment of environmentally transmitted sarcoptic mange in a population of bare-nosed wombats. The wombat population is structured into four classes representing stages of infection, in a model that consists of five non-linear differential equations including the unattached mite population. It is shown that four different epidemiological outcomes are possible. These are: (1) extinction of wombats (and mites); (2) mite-free wombat populations; (3) endemic wombats and mites coexisting, with the wombats' population reduced below the environmental carrying capacity; and (4) a stable limit cycle (sustained oscillating populations) with wombat population far below carrying capacity. Empirical evidence exists for the first two of these outcomes, with the third highly likely to occur in nature, and the fourth plausible at least until wombat populations succumb to Allee effects. These potential outcomes are examined to inform treatment programs for wombat populations. Through this theoretical exploration of a relatively well understood empirical system, this study supports general learning across environmentally transmitted wildlife pathogens, increasing understanding of how pathogen dynamics may cause crashes in some populations and not others.


Assuntos
Marsupiais/parasitologia , Modelos Teóricos , Escabiose/transmissão , Animais , Animais Selvagens , Infestações por Ácaros/terapia , Infestações por Ácaros/transmissão , Ácaros/patogenicidade , Escabiose/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA