Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Phys ; 39(2): 277-87, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23704797

RESUMO

The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA-coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.

2.
J Mol Biol ; 425(6): 1050-64, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23318955

RESUMO

We have examined the roles of RNA-coat protein (CP) interactions in the assembly of satellite tobacco necrosis virus (STNV). The viral genomic RNA encodes only the CP, which comprises a ß-barrel domain connected to a positively charged N-terminal extension. In the previous crystal structures of this system, the first 11 residues of the protein are disordered. Using variants of an RNA aptamer sequence isolated against the CP, B3, we have studied the sequence specificity of RNA-induced assembly. B3 consists of a stem-loop presenting the tetra-loop sequence ACAA. There is a clear preference for RNAs encompassing this loop sequence, as measured by the yield of T=1 capsids, which is indifferent to sequences within the stem. The B3-containing virus-like particle has been crystallised and its structure was determined to 2.3Å. A lower-resolution map encompassing density for the RNA has also been calculated. The presence of B3 results in increased ordering of the N-terminal helices located at the particle 3-fold axes, which extend by roughly one and a half turns to encompass residues 8-11, including R8 and K9. Under assembly conditions, STNV CP in the absence of RNA is monomeric and does not self-assemble. These facts suggest that a plausible model for assembly initiation is the specific RNA-induced stabilisation of a trimeric capsomere. The basic nature of the helical extension suggests that electrostatic repulsion between CPs prevents assembly in the absence of RNA and that this barrier is overcome by correct placement of appropriately orientated helical RNA stems. Such a mechanism would be consistent with the data shown here for assembly with longer RNA fragments, including an STNV genome. The results are discussed in light of a first stage of assembly involving compaction of the genomic RNA driven by multiple RNA packaging signal-CP interactions.


Assuntos
Proteínas do Capsídeo/química , RNA Viral/química , Vírus Satélite da Necrose do Tabaco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Genoma Viral , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Viral/metabolismo
3.
J Mol Biol ; 417(1-2): 65-78, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22306464

RESUMO

We have determined the three-dimensional structures of both native and expanded forms of turnip crinkle virus (TCV), using cryo-electron microscopy, which allows direct visualization of the encapsidated single-stranded RNA and coat protein (CP) N-terminal regions not seen in the high-resolution X-ray structure of the virion. The expanded form, which is a putative disassembly intermediate during infection, arises from a separation of the capsid-forming domains of the CP subunits. Capsid expansion leads to the formation of pores that could allow exit of the viral RNA. A subset of the CP N-terminal regions becomes proteolytically accessible in the expanded form, although the RNA remains inaccessible to nuclease. Sedimentation velocity assays suggest that the expanded state is metastable and that expansion is not fully reversible. Proteolytically cleaved CP subunits dissociate from the capsid, presumably leading to increased electrostatic repulsion within the viral RNA. Consistent with this idea, electron microscopy images show that proteolysis introduces asymmetry into the TCV capsid and allows initial extrusion of the genome from a defined site. The apparent formation of polysomes in wheat germ extracts suggests that subsequent uncoating is linked to translation. The implication is that the viral RNA and its capsid play multiple roles during primary infections, consistent with ribosome-mediated genome uncoating to avoid host antiviral activity.


Assuntos
Carmovirus/ultraestrutura , RNA Viral/análise , Capsídeo/química , Capsídeo/ultraestrutura , Carmovirus/química , Microscopia Crioeletrônica , RNA Viral/ultraestrutura , Vírion
4.
J Mol Biol ; 413(1): 51-65, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21839093

RESUMO

Using a recombinant, T=1 Satellite Tobacco Necrosis Virus (STNV)-like particle expressed in Escherichia coli, we have established conditions for in vitro disassembly and reassembly of the viral capsid. In vivo assembly is dependent on the presence of the coat protein (CP) N-terminal region, and in vitro assembly requires RNA. Using immobilised CP monomers under reassembly conditions with "free" CP subunits, we have prepared a range of partially assembled CP species for RNA aptamer selection. SELEX directed against the RNA-binding face of the STNV CP resulted in the isolation of several clones, one of which (B3) matches the STNV-1 genome in 16 out of 25 nucleotide positions, including across a statistically significant 10/10 stretch. This 10-base region folds into a stem-loop displaying the motif ACAA and has been shown to bind to STNV CP. Analysis of the other aptamer sequences reveals that the majority can be folded into stem-loops displaying versions of this motif. Using a sequence and secondary structure search motif to analyse the genomic sequence of STNV-1, we identified 30 stem-loops displaying the sequence motif AxxA. The implication is that there are many stem-loops in the genome carrying essential recognition features for binding STNV CP. Secondary structure predictions of the genomic RNA using Mfold showed that only 8 out of 30 of these stem-loops would be formed in the lowest-energy structure. These results are consistent with an assembly mechanism based on kinetically driven folding of the RNA.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Multimerização Proteica , RNA Viral/metabolismo , Vírus Satélite da Necrose do Tabaco/fisiologia , Montagem de Vírus , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Viral/genética , Técnica de Seleção de Aptâmeros , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA