Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
NPJ Biodivers ; 3(1): 28, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289538

RESUMO

A genomic database of all Earth's eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP.

3.
Wellcome Open Res ; 9: 361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239167

RESUMO

We present a reference genome assembly from an individual male Rhynchonycteris naso (Chordata; Mammalia; Chiroptera; Emballonuridae). The genome sequence is 2.46 Gb in span. The majority of the assembly is scaffolded into 22 chromosomal pseudomolecules, with the Y sex chromosome assembled.

4.
Heredity (Edinb) ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39278996

RESUMO

We present a reference genome assembly from an individual male Violet Carpenter Bee (Xylocopa violacea, Linnaeus 1758). The assembly is 1.02 gigabases in span. 48% of the assembly is scaffolded into 17 pseudo-chromosomal units. The mitochondrial genome has also been assembled and is 21.8 kilobases in length. The genome is highly repetitive, likely representing a highly heterochromatic architecture expected of bees from the genus Xylocopa. We also use an evidence-based methodology to annotate 10,152 high confidence coding genes. This genome was sequenced as part of the pilot project of the European Reference Genome Atlas (ERGA) and represents an important addition to the genomic resources available for Hymenoptera.

5.
Sci Rep ; 14(1): 19925, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261501

RESUMO

The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.


Assuntos
Águias , Genoma , Animais , Águias/genética , Feminino , Elementos de DNA Transponíveis/genética , Filogenia , Evolução Molecular , Retroelementos/genética , Genômica/métodos
6.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131277

RESUMO

We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.

7.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38584387

RESUMO

The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.


Assuntos
Cromossomos , Genoma , Animais , Cromossomos/genética , Gastrópodes/genética , Inversão Cromossômica , Ecótipo
8.
Proc Natl Acad Sci U S A ; 121(15): e2319506121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557186

RESUMO

Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events.


Assuntos
Evolução Biológica , Genoma , Animais , Filogenia , Genoma/genética , Aves , Recombinação Genética
9.
Sci Adv ; 10(17): eadl5255, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657058

RESUMO

Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.


Assuntos
Polimorfismo Genético , Animais , Feminino , Masculino , Aves/genética , Fenótipo , Evolução Biológica , Pigmentação/genética , Caracteres Sexuais , Evolução Molecular
10.
J Hered ; 115(3): 311-316, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513109

RESUMO

Animals living in caves are of broad relevance to evolutionary biologists interested in understanding the mechanisms underpinning convergent evolution. In the Eastern Andes of Colombia, populations from at least two distinct clades of Trichomycterus catfishes (Siluriformes) independently colonized cave environments and converged in phenotype by losing their eyes and pigmentation. We are pursuing several research questions using genomics to understand the evolutionary forces and molecular mechanisms responsible for repeated morphological changes in this system. As a foundation for such studies, here we describe a diploid, chromosome-scale, long-read reference genome for Trichomycterus rosablanca, a blind, depigmented species endemic to the karstic system of the department of Santander. The nuclear genome comprises 1 Gb in 27 chromosomes, with a 40.0× HiFi long-read genome coverage having an N50 scaffold of 40.4 Mb and N50 contig of 13.1 Mb, with 96.9% (Eukaryota) and 95.4% (Actinopterygii) universal single-copy orthologs (BUSCO). This assembly provides the first reference genome for the speciose genus Trichomycterus, serving as a key resource for research on the genomics of phenotypic evolution.


Assuntos
Evolução Biológica , Peixes-Gato , Cavernas , Genoma , Peixes-Gato/genética , Masculino , Animais , Análise de Sequência de DNA , Olho , Pigmentação , Cromossomos , Fenótipo
11.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376487

RESUMO

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Assuntos
Balaenoptera , Neoplasias , Animais , Balaenoptera/genética , Duplicações Segmentares Genômicas , Genoma , Demografia , Neoplasias/genética
12.
Sci Data ; 11(1): 176, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326333

RESUMO

Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.


Assuntos
Cromossomos , Musaranhos , Animais , Camundongos , Cromossomos/genética , Genoma , Genômica , Anotação de Sequência Molecular , Musaranhos/genética
14.
Sci Data ; 10(1): 880, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066002

RESUMO

Chub mackerels (Scomber japonicus) are a migratory marine fish widely distributed in the Indo-Pacific Ocean. They are globally consumed for their high Omega-3 content, but their population is declining due to global warming. Here, we generated the first chromosome-level genome assembly of chub mackerel (fScoJap1) using the Vertebrate Genomes Project assembly pipeline with PacBio HiFi genomic sequencing and Arima Hi-C chromosome contact data. The final assembly is 828.68 Mb with 24 chromosomes, nearly all containing telomeric repeats at their ends. We annotated 31,656 genes and discovered that approximately 2.19% of the genome contained DNA transposon elements repressed within duplicated genes. Analyzing 5-methylcytosine (5mC) modifications using HiFi reads, we observed open/close chromatin patterns at gene promoters, including the FADS2 gene involved in Omega-3 production. This chromosome-level reference genome provides unprecedented opportunities for advancing our knowledge of chub mackerels in biology, industry, and conservation.


Assuntos
Cyprinidae , Genoma , Perciformes , Animais , Cromossomos , Cyprinidae/genética , Oceano Pacífico , Perciformes/genética
15.
BMC Biol ; 21(1): 267, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993882

RESUMO

BACKGROUND: The red junglefowl, the wild outgroup of domestic chickens, has historically served as a reference for genomic studies of domestic chickens. These studies have provided insight into the etiology of traits of commercial importance. However, the use of a single reference genome does not capture diversity present among modern breeds, many of which have accumulated molecular changes due to drift and selection. While reference-based resequencing is well-suited to cataloging simple variants such as single-nucleotide changes and short insertions and deletions, it is mostly inadequate to discover more complex structural variation in the genome. METHODS: We present a pangenome for the domestic chicken consisting of thirty assemblies of chickens from different breeds and research lines. RESULTS: We demonstrate how this pangenome can be used to catalog structural variants present in modern breeds and untangle complex nested variation. We show that alignment of short reads from 100 diverse wild and domestic chickens to this pangenome reduces reference bias by 38%, which affects downstream genotyping results. This approach also allows for the accurate genotyping of a large and complex pair of structural variants at the K feathering locus using short reads, which would not be possible using a linear reference. CONCLUSIONS: We expect that this new paradigm of genomic reference will allow better pinpointing of exact mutations responsible for specific phenotypes, which will in turn be necessary for breeding chickens that meet new sustainability criteria and are resilient to quickly evolving pathogen threats.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Genótipo , Análise de Sequência de DNA , Genômica
16.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834264

RESUMO

The European mink Mustela lutreola (Mustelidae) ranks among the most endangered mammalian species globally, experiencing a rapid and severe decline in population size, density, and distribution. Given the critical need for effective conservation strategies, understanding its genomic characteristics becomes paramount. To address this challenge, the platinum-quality, chromosome-level reference genome assembly for the European mink was successfully generated under the project of the European Mink Centre consortium. Leveraging PacBio HiFi long reads, we obtained a 2586.3 Mbp genome comprising 25 scaffolds, with an N50 length of 154.1 Mbp. Through Hi-C data, we clustered and ordered the majority of the assembly (>99.9%) into 20 chromosomal pseudomolecules, including heterosomes, ranging from 6.8 to 290.1 Mbp. The newly sequenced genome displays a GC base content of 41.9%. Additionally, we successfully assembled the complete mitochondrial genome, spanning 16.6 kbp in length. The assembly achieved a BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness score of 98.2%. This high-quality reference genome serves as a valuable genomic resource for future population genomics studies concerning the European mink and related taxa. Furthermore, the newly assembled genome holds significant potential in addressing key conservation challenges faced by M. lutreola. Its applications encompass potential revision of management units, assessment of captive breeding impacts, resolution of phylogeographic questions, and facilitation of monitoring and evaluating the efficiency and effectiveness of dedicated conservation strategies for the European mink. This species serves as an example that highlights the paramount importance of prioritizing endangered species in genome sequencing projects due to the race against time, which necessitates the comprehensive exploration and characterization of their genomic resources before their populations face extinction.


Assuntos
Espécies em Perigo de Extinção , Vison , Animais , Vison/genética , Platina , Conservação dos Recursos Naturais , Genômica
18.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590950

RESUMO

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , Ecossistema , Rearranjo Gênico , Genômica , Cromossomos/genética
19.
Nature ; 621(7978): 344-354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612512

RESUMO

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.


Assuntos
Cromossomos Humanos Y , Genômica , Análise de Sequência de DNA , Humanos , Sequência de Bases , Cromossomos Humanos Y/genética , DNA Satélite/genética , Variação Genética/genética , Genética Populacional , Genômica/métodos , Genômica/normas , Heterocromatina/genética , Família Multigênica/genética , Padrões de Referência , Duplicações Segmentares Genômicas/genética , Análise de Sequência de DNA/normas , Sequências de Repetição em Tandem/genética , Telômero/genética
20.
BMC Bioinformatics ; 24(1): 288, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464285

RESUMO

BACKGROUND:  PacBio high fidelity (HiFi) sequencing reads are both long (15-20 kb) and highly accurate (> Q20). Because of these properties, they have revolutionised genome assembly leading to more accurate and contiguous genomes. In eukaryotes the mitochondrial genome is sequenced alongside the nuclear genome often at very high coverage. A dedicated tool for mitochondrial genome assembly using HiFi reads is still missing. RESULTS:  MitoHiFi was developed within the Darwin Tree of Life Project to assemble mitochondrial genomes from the HiFi reads generated for target species. The input for MitoHiFi is either the raw reads or the assembled contigs, and the tool outputs a mitochondrial genome sequence fasta file along with annotation of protein and RNA genes. Variants arising from heteroplasmy are assembled independently, and nuclear insertions of mitochondrial sequences are identified and not used in organellar genome assembly. MitoHiFi has been used to assemble 374 mitochondrial genomes (368 Metazoa and 6 Fungi species) for the Darwin Tree of Life Project, the Vertebrate Genomes Project and the Aquatic Symbiosis Genome Project. Inspection of 60 mitochondrial genomes assembled with MitoHiFi for species that already have reference sequences in public databases showed the widespread presence of previously unreported repeats. CONCLUSIONS:  MitoHiFi is able to assemble mitochondrial genomes from a wide phylogenetic range of taxa from Pacbio HiFi data. MitoHiFi is written in python and is freely available on GitHub ( https://github.com/marcelauliano/MitoHiFi ). MitoHiFi is available with its dependencies as a Docker container on GitHub (ghcr.io/marcelauliano/mitohifi:master).


Assuntos
Genoma Mitocondrial , Filogenia , RNA , Eucariotos , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA