Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202400673, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38381534

RESUMO

A broadly improved second generation catalytic two-phase strategy for the enantioselective synthesis of stereogenic at phosphorus (V) compounds is described. This protocol, consisting of a bifunctional iminophosphorane (BIMP) catalyzed nucleophilic desymmetrization of prochiral, bench stable P(V) precursors and subsequent enantiospecific substitution allows for divergent access to a wide range of C-, N-, O- and S- substituted P(V) containing compounds from a handful of enantioenriched intermediates. A new ureidopeptide BIMP catalyst/thiaziolidinone leaving group combination allowed for a far wider substrate scope and increased reaction efficiency and practicality over previously established protocols. The resulting enantioenriched intermediates could then be transformed into an even greater range of distinct classes of P(V) compounds by displacement of the remaining leaving group as well as allowing for even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads to increased generality in our second-generation catalytic system, as well as shed light onto observed stereochemical retention and inversion pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents.

2.
Nat Chem ; 16(3): 426-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093093

RESUMO

The appeal of catalytic click chemistry is largely due to the copper-catalysed azide-alkyne cycloaddition (CuAAC) process, which is orthogonal to the more recently introduced sulfur-fluoride exchange (SuFEx). However, the triazole rings generated by CuAAC are not readily modifiable, and SuFEx connectors cannot be selectively functionalized, attributes that would be attractive in a click process. Here we introduce bisphosphine-copper-catalysed phenoxydiazaborinine formation (CuPDF), a link-and-in situ modify strategy for merging a nitrile, an allene, a diborane and a hydrazine. We also present copper- and palladium-catalysed quinoline formation (Cu/PdQNF), which is applicable in aqueous media, involving an aniline as the modifier. CuPDF and Cu/PdQNF are easy to perform and deliver robust, alterable and tunable fluorescent hubs. CuPDF and Cu/PdQNF are orthogonal to SuFEx and CuAAC, despite the latter and CuPDF also being catalysed by an organocopper species. These advantages were applied to protecting group-free syntheses of sequence-defined branched oligomers, a chemoselectively amendable polymer, three drug conjugates and a two-drug conjugate.

3.
Nat Chem ; 15(5): 714-721, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127757

RESUMO

Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles.

4.
J Am Chem Soc ; 145(23): 12771-12782, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253087

RESUMO

A bifunctional iminophosphorane (BIMP)-catalyzed, enantioselective intramolecular oxa-Michael reaction of alcohols to tethered, low electrophilicity Michael acceptors is described. Improved reactivity over previous reports (1 day vs 7 days), excellent yields (up to 99%), and enantiomeric ratios (up to 99.5:0.5 er) are demonstrated. The broad reaction scope, enabled by catalyst modularity and tunability, includes substituted tetrahydrofurans (THFs) and tetrahydropyrans (THPs), oxaspirocycles, sugar and natural product derivatives, dihydro-(iso)-benzofurans, and iso-chromans. A state-of-the-art computational study revealed that the enantioselectivity originates from the presence of several favorable intermolecular hydrogen bonds between the BIMP catalyst and the substrate that induce stabilizing electrostatic and orbital interactions. The newly developed catalytic enantioselective approach was carried out on multigram scale, and multiple Michael adducts were further derivatized to an array of useful building blocks, providing access to enantioenriched biologically active molecules and natural products.

5.
J Am Chem Soc ; 144(2): 1006-1015, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990142

RESUMO

The first metal-free catalytic intermolecular enantioselective Michael addition to unactivated α,ß-unsaturated amides is described. Consistently high enantiomeric excesses and yields were obtained over a wide range of alkyl thiol pronucleophiles and electrophiles under mild reaction conditions, enabled by a novel squaramide-based bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0 mol %) were achieved on a decagram scale, demonstrating the scalability of the reaction. Computational analysis revealed the origin of the high enantiofacial selectivity via analysis of relevant transition structures and provided substantial support for specific noncovalent activation of the carbonyl group of the α,ß-unsaturated amide by the catalyst.

6.
Acc Chem Res ; 53(10): 2235-2247, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32886474

RESUMO

To improve the field of catalysis, there is a substantial and growing need for novel high-performance catalysts providing new reactivity. To date, however, the set of reactions that can be reliably performed to prepare chiral compounds in largely one enantiomeric form using chiral catalysts still represents a small fraction of the toolkit of known transformations. In this context, chiral Brønsted bases have played an expanding role in catalyzing enantioselective reactions between various carbon- and heteroatom-centered acids and a host of electrophilic reagents. This Account describes our recent efforts developing and applying a new family of chiral Brønsted bases incorporating an H-bond donor moiety and a strongly basic iminophosphorane, which we have named BIMPs (Bifunctional IMinoPhosphoranes), as efficient catalysts for reactions currently out of reach of more widespread tertiary amine centered bifunctional catalysts. The iminophosphorane Brønsted base is easily generated by the Staudinger reaction of a chiral organoazide and commercially available phosphine, which allows easy modification of the catalyst structure and fine-tuning of the iminophosphorane pKBH+. We have demonstrated that BIMP catalysts can efficiently promote the enantioselective addition of nitromethane to low reactivity N-diphenylphosphinoyl (DPP)-protected imines of ketones (ketimines) to access valuable chiral diamine and α-quaternary amino acid building blocks, and later extended this methodology to phosphite nucleophiles. Subsequently, the reaction scope was expanded to include the Michael addition of high pKa alkyl thiols to α-substituted acrylate esters, ß-substituted α,ß-unsaturated esters, and alkenyl benzimidazoles as well as the challenging direct aldol addition of aryl ketones to α-fluorinated ketones. Finally, BIMP catalysts were shown to be used in key steps in the synthesis of complex alkaloid natural products (-)-nakadomarin A and (-)-himalensine A, as well as in polymer synthesis. In most cases, the predictable nature of the BIMP promoted reactions was demonstrated by multigram scale-up while employing low catalyst loadings (down to 0.05 mol%). Furthermore, it was shown that BIMP catalysts can be easily immobilized onto a solid support in one-step for increased catalyst recycling and flow chemistry applications. Alongside our own work, this Account also includes elegant work by Johnson and co-workers utilizing the BIMP catalyst system, when alternative catalysts proved suboptimal.

7.
J Org Chem ; 84(11): 7159-7165, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31081630

RESUMO

The first total synthesis of the potent antibiotic berkeleylactone A is described in 10 steps with an overall yield of 9.5%. A key step of our concise route is a late-stage, highly diastereoselective, sulfa-Michael addition. The 16-membered macrocyclic lactone was formed via ring closing metathesis and subsequent chemoselective reduction. The absolute stereochemical configuration was confirmed by single-crystal X-ray analysis. Synthetic berkeleylactone A was tested against several methicillin-resistant Staphylococcus aureus strains, and its potent antibacterial activity was verified.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Macrolídeos/síntese química , Macrolídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/química , Cristalografia por Raios X , Macrolídeos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
8.
Chem Sci ; 9(34): 6969-6974, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30210771

RESUMO

The first enantioselective sulfa-Michael addition of alkyl thiols to alkenyl benzimidazoles, enabled by a bifunctional iminophosphorane (BIMP) organocatalyst, is described. The iminophosphorane moiety of the catalyst provides the required basicity to deprotonate the thiol nucleophile while the chiral scaffold and H-bond donor control facial selectivity. The reaction is broad in scope with respect to the thiol and benzimidazole reaction partners with the reaction proceeding in up to 98% yield and 96 : 4 er.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA