Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 16: 246, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26541514

RESUMO

BACKGROUND: Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. RESULTS: Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40-700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. CONCLUSIONS: These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Isquemia/genética , Hipóxia Celular/genética , Linhagem Celular , Cromatina/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/genética , Recuperação de Fluorescência Após Fotodegradação , Heterocromatina/genética , Heterocromatina/ultraestrutura , Histonas/genética , Histonas/metabolismo , Humanos , Isquemia/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA