Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JOR Spine ; 7(3): e1360, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39071861

RESUMO

Background: Facet fractures are frequently associated with clinically observed cervical facet dislocations (CFDs); however, to date there has only been one experimental study, using functional spinal units (FSUs), which has systematically produced CFD with concomitant facet fracture. The role of axial compression and distraction on the mechanical response of the cervical facets under intervertebral motions associated with CFD in FSUs has previously been shown. The same has not been demonstrated in multi-segment lower cervical spine specimens under flexion loading (postulated to be the local injury vector associated with CFD). Methods: This study investigated the mechanical response of the bilateral inferior C6 facets of thirteen C5-C7 specimens (67±13 yr, 6 male) during non-destructive constrained flexion, superimposed with each of five axial conditions: (1) 50 N compression (simulating weight of the head); (2-4) 300, 500, and 1000 N compression (simulating the spectrum of intervertebral compression resulting from neck muscle bracing prior to head-first impact and/or externally applied compressive forces); and, (5) 2 mm of C6/C7 distraction (simulating the intervertebral distraction present during inertial loading of the cervical spine by the weight of the head). Linear mixed-effects models (α = 0.05) assessed the effect of axial condition. Results: Increasing amounts of intervertebral compression superimposed on flexion rotations, resulted in increased facet surface strains (range of estimated mean difference relative to Neutral: maximum principal = 77 to 110 µÎµ, minimum principal = 126 to 293 µÎµ, maximum shear = 203 to 375 µÎµ) and angular deflection of the bilateral inferior C6 facets relative to the C6 vertebral body (range of estimated mean difference relative to Neutral = 0.59° to 1.47°). Conclusions: These findings suggest increased facet engagement and higher load transfer through the facet joint, and potentially a higher likelihood of facet fracture under the compressed axial conditions.

2.
J Orthop Res ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735861

RESUMO

Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increased the demand for synthetic training models, which are currently limited by a lack of biomechanical fidelity. Here, we aimed to design, manufacture, and experimentally validate a synthetic knee surgical training model which reproduces the flexion dependent varus-valgus (VV) and anterior-posterior (AP) mechanics of cadaveric knees, while maintaining anatomic accuracy. A probabilistic finite element modeling approach was employed to design physical models to exhibit passive cadaveric VV and AP mechanics. Seven synthetic models were manufactured and tested in a six-degree-of-freedom hexapod robot. Overall, the synthetic models exhibited cadaver-like VV and AP mechanics across a wide range of flexion angles with little variation between models. In the extended position, two models showed increased valgus rotation (<0.5°), and three models showed increased posterior tibial translation (<1.7 mm) when compared to the 95% confidence interval (CI) of cadaveric measurements. At full flexion, all models showed VV and AP mechanics within the 95% CI of cadaveric measurements. Given the repeatable mechanics exhibited, the knee models developed in this study can be used to reduce the current reliance on cadaveric specimens in surgical training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA