Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(35): eadi4029, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647404

RESUMO

The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.


Assuntos
Longevidade , Metaboloma , Fenótipo , Folhas de Planta
2.
Curr Biol ; 33(15): 3229-3237.e4, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37369210

RESUMO

Exposure to ultraviolet radiation (UVR) is harmful to living cells, leading organisms to evolve protective mechanisms against UVR-induced cellular damage and stress.1,2 UVR, particularly UVB (280-320 nm), can damage proteins and DNA, leading to errors during DNA repair and replication. Excessive UVR can induce cellular death. Aquatic organisms face risk of UV exposure as biologically harmful levels of UVB can penetrate >10 m in clear water.3 While melanin is the only known sunscreen in vertebrates, it often emerges late in embryonic development, rendering embryos of many species vulnerable during the earlier stages. Algae and microbes produce a class of sunscreening compounds known as mycosporine-like amino acids (MAAs).4 Fish eggs contain a similar compound called gadusol, whose role as a sunscreen has yet to be tested despite its discovery over 40 years ago.5 The recent finding that many vertebrate genomes contain a biosynthetic pathway for gadusol suggests that many fish may produce and use this molecule as a sunscreen.6 We generated a gadusol-deficient mutant zebrafish to investigate the role of gadusol in protecting fish embryos and larvae from UVR. Our results demonstrate that maternally provided gadusol is the primary sunscreen in embryonic and larval development, while melanin provides modest secondary protection. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.


Assuntos
Protetores Solares , Raios Ultravioleta , Animais , Protetores Solares/farmacologia , Protetores Solares/química , Raios Ultravioleta/efeitos adversos , Peixe-Zebra/genética , Melaninas , Dano ao DNA
3.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778296

RESUMO

Ultraviolet radiation (UVR) and its deleterious effects on living cells selects for UVR-protective mechanisms. Organisms across the tree of life evolved a variety of natural sunscreens to prevent UVR-induced cellular damage and stress. However, in vertebrates, only melanin is known to act as a sunscreen. Here we demonstrate that gadusol, a transparent compound discovered over 40 years ago in fish eggs, is a maternally provided sunscreen required for survival of embryonic and larval zebrafish exposed to UVR. Mutating an enzyme involved in gadusol biosynthesis increases the formation of cyclobutane pyrimidine dimers, a hallmark of UVB-induced DNA damage. Compared to the contributions of melanin and the chorion, gadusol is the primary sunscreening mechanism in embryonic and larval fish. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.

4.
New Phytol ; 237(2): 631-642, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263711

RESUMO

Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.


Assuntos
Fabaceae , Metabolômica , Metabolismo Secundário , Filogenia , Floresta Úmida
5.
Appl Environ Microbiol ; 88(24): e0149822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445079

RESUMO

The mushroom genus Psilocybe is best known as the core group of psychoactive mushrooms, yet basic information on their diversity, taxonomy, chemistry, and general biology is still largely lacking. In this study, we reexamined 94 Psilocybe fungarium specimens, representing 18 species, by DNA barcoding, evaluated the stability of psilocybin, psilocin, and their related tryptamine alkaloids in 25 specimens across the most commonly vouchered species (Psilocybe cubensis, Psilocybe cyanescens, and Psilocybe semilanceata), and explored the metabolome of cultivated P. cubensis. Our data show that, apart from a few well-known species, the taxonomic accuracy of specimen determinations is largely unreliable, even at the genus level. A substantial quantity of poor-quality and mislabeled sequence data in public repositories, as well as a paucity of sequences derived from types, further exacerbates the problem. Our data also support taxon- and time-dependent decay of psilocybin and psilocin, with some specimens having no detectable quantities of them. We also show that the P. cubensis metabolome possibly contains thousands of uncharacterized compounds, at least some of which may be bioactive. Taken together, our study undermines commonly held assumptions about the accuracy of names and presence of controlled substances in fungarium specimens identified as Psilocybe spp. and reveals that our understanding of the chemical diversity of these mushrooms is largely incomplete. These results have broader implications for regulatory policies pertaining to the storage and sharing of fungarium specimens as well as the use of psychoactive mushrooms for recreation and therapy. IMPORTANCE The therapeutic use of psilocybin, the active ingredient in "magic mushrooms," is revolutionizing mental health care for a number of conditions, including depression, posttraumatic stress disorder (PTSD), and end-of-life care. This has spotlighted the current state of knowledge of psilocybin, including the organisms that endogenously produce it. However, because of international regulation of psilocybin as a controlled substance (often included on the same list as cocaine and heroin), basic research has lagged far behind. Our study highlights how the poor state of knowledge of even the most fundamental scientific information can impact the use of psilocybin-containing mushrooms for recreational or therapeutic applications and undermines critical assumptions that underpin their regulation by legal authorities. Our study shows that currently available chemical studies are mainly inaccurate, irreproducible, and inconsistent, that there exists a high rate of misidentification in museum collections and public databases rendering even names unreliable, and that the concentration of psilocybin and its tryptamine derivatives in three of the most commonly collected Psilocybe species (P. cubensis, P. cyanescens, and P. semilanceata) is highly variable and unstable in museum specimens spanning multiple decades, and our study generates the first-ever insight into the highly complex and largely uncharacterized metabolomic profile for the most commonly cultivated magic mushroom, P. cubensis.


Assuntos
Agaricales , Psilocybe , Psilocibina/análise , Psilocibina/metabolismo , Agaricales/genética , Agaricales/metabolismo , Psilocybe/genética , Triptaminas/metabolismo , DNA/metabolismo
6.
PeerJ ; 10: e13767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061752

RESUMO

In species-rich regions and highly speciose genera, the need for species identification and taxonomic recognition has led to the development of emergent technologies. Here, we combine long-term plot data with untargated metabolomics, and morphological and phylogenetic data to describe a new rare species in the hyperdiverse genus of trees Inga Mill. Our combined data show that Inga coleyana is a new lineage splitting from their closest relatives I. coruscans and I. cylindrica. Moreover, analyses of the chemical defensive profile demonstrate that I. coleyana has a very distinctive chemistry from their closest relatives, with I. coleyana having a chemistry based on saponins and I. cylindrica and I. coruscans producing a series of dihydroflavonols in addition to saponins. Finally, data from our network of plots suggest that I. coleyana is a rare and probably endemic taxon in the hyper-diverse genus Inga. Thus, the synergy produced by different approaches, such as long-term plot data and metabolomics, could accelerate taxonomic recognition in challenging tropical biomes.


Assuntos
Fabaceae , Florestas , Filogenia , Ecossistema , Metabolômica
7.
PLoS One ; 17(3): e0266222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358265

RESUMO

Tropical forests sustain many ant species whose mating events often involve conspicuous flying swarms of winged gynes and males. The success of these reproductive flights depends on environmental variables and determines the maintenance of local ant diversity. However, we lack a strong understanding of the role of environmental variables in shaping the phenology of these flights. Using a combination of community-level analyses and a time-series model on male abundance, we studied male ant phenology in a seasonally wet lowland rainforest in the Panama Canal. The male flights of 161 ant species, sampled with 10 Malaise traps during 58 consecutive weeks (from August 2014 to September 2015), varied widely in number (mean = 9.8 weeks, median = 4, range = 1 to 58). Those species abundant enough for analysis (n = 97) flew mainly towards the end of the dry season and at the start of the rainy season. While litterfall, rain, temperature, and air humidity explained community composition, the time-series model estimators elucidated more complex patterns of reproductive investment across the entire year. For example, male abundance increased in weeks when maximum daily temperature increased and in wet weeks during the dry season. On the contrary, male abundance decreased in periods when rain receded (e.g., at the start of the dry season), in periods when rain fell daily (e.g., right after the beginning of the wet season), or when there was an increase in the short-term rate of litterfall (e.g., at the end of the dry season). Together, these results suggest that the BCI ant community is adapted to the dry/wet transition as the best timing of reproductive investment. We hypothesize that current climate change scenarios for tropical regions with higher average temperature, but lower rainfall, may generate phenological mismatches between reproductive flights and the adequate conditions needed for a successful start of the colony.


Assuntos
Formigas , Clima Tropical , Animais , Mudança Climática , Florestas , Masculino , Chuva , Estações do Ano , Árvores
8.
J Exp Bot ; 70(20): 5853-5864, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31257446

RESUMO

Saplings in the shade of the tropical understorey face the challenge of acquiring sufficient carbon for growth as well as defence against intense pest pressure. A minor increase in light availability via canopy thinning may allow for increased investment in chemical defence against pests, but it may also necessitate additional biochemical investment to prevent light-induced oxidative stress. The shifts in secondary metabolite composition that increased sun exposure may precipitate in such tree species present an ideal milieu for evaluating the potential of a single suite of phenolic secondary metabolites to be used in mitigating both abiotic and biotic stressors. To conduct such an evaluation, we exposed saplings of two unrelated species to a range of light environments and compared changes in their foliar secondary metabolome alongside corresponding changes in the abiotic and biotic activity of their secondary metabolite suites. Among the numerous classes of secondary metabolites found in both species, phenolics accounted for the majority of increases in antioxidant and UV-absorbing properties as well as activity against an invertebrate herbivore and a fungal pathogen. Our results support the hypothesis that phenolics contribute to the capacity of plants to resist co-occurring abiotic and biotic stressors in resource-limited conditions.


Assuntos
Fenóis/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Animais , Herbivoria , Metaboloma/genética , Metaboloma/fisiologia , Folhas de Planta/parasitologia , Árvores/parasitologia , Clima Tropical
9.
Science ; 363(6432): 1213-1216, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872524

RESUMO

Ecological theory predicts that the high local diversity observed in tropical forests is maintained by negative density-dependent interactions within and between closely related plant species. By using long-term data on tree growth and survival for coexisting Inga (Fabaceae, Mimosoideae) congeners, we tested two mechanisms thought to underlie negative density dependence (NDD): competition for resources and attack by herbivores. We quantified the similarity of neighbors in terms of key ecological traits that mediate these interactions, as well as the similarity of herbivore communities. We show that phytochemical similarity and shared herbivore communities are associated with decreased growth and survival at the sapling stage, a key bottleneck in the life cycle of tropical trees. None of the traits associated with resource acquisition affect plant performance, indicating that competition between neighbors may not shape local tree diversity. These results suggest that herbivore pressure is the primary mechanism driving NDD at the sapling stage.


Assuntos
Biodiversidade , Fabaceae/crescimento & desenvolvimento , Florestas , Herbivoria , Árvores/crescimento & desenvolvimento , Animais
10.
Front Plant Sci ; 9: 1237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190723

RESUMO

Coevolutionary theory has long predicted that the arms race between plants and herbivores is a major driver of host selection and diversification. At a local scale, plant defenses contribute significantly to the structure of herbivore assemblages and the high alpha diversity of plants in tropical rain forests. However, the general importance of plant defenses in host associations and divergence at regional scales remains unclear. Here, we examine the role of plant defensive traits and phylogeny in the evolution of host range and species divergence in leaf-feeding sawflies of the family Argidae associated with Neotropical trees in the genus Inga throughout the Amazon, the Guiana Shield and Panama. Our analyses show that the phylogenies of both the sawfly herbivores and their Inga hosts are congruent, and that sawflies radiated at approximately the same time, or more recently than their Inga hosts. Analyses controlling for phylogenetic effects show that the evolution of host use in the sawflies associated with Inga is better correlated with Inga chemistry than with Inga phylogeny, suggesting a pattern of delayed host tracking closely tied to host chemistry. Finally, phylogenetic analyses show that sister species of Inga-sawflies are dispersed across the Neotropics, suggesting a role for allopatric divergence and vicariance in Inga diversification. These results are consistent with the idea that host defensive traits play a key role not only in structuring the herbivore assemblages at a single site, but also in the processes shaping host association and species divergence at a regional scale.

11.
New Phytol ; 218(2): 847-858, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436716

RESUMO

The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or 'chemocoding', has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short.


Assuntos
DNA de Plantas/genética , Fabaceae/anatomia & histologia , Fabaceae/classificação , Metabolômica/métodos , Geografia , Análise Multivariada , Filogenia , América do Sul , Especificidade da Espécie
12.
Ecol Evol ; 6(2): 478-92, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26843932

RESUMO

Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA