Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS One ; 19(5): e0302653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748750

RESUMO

Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.


Assuntos
Monóxido de Carbono , Modelos Animais de Doenças , Animais , Suínos , Monóxido de Carbono/farmacologia , Monóxido de Carbono/metabolismo , Parada Cardíaca/terapia , Parada Cardíaca Extra-Hospitalar/terapia , Masculino , Reanimação Cardiopulmonar/métodos
2.
J Med Toxicol ; 20(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847352

RESUMO

INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). One of the glaring gaps is the lack of rigorous experimental models that may recapitulate survivors of acute CO poisoning in the early phase. The primary objective of this preliminary study is to use our advanced swine platform of acute CO poisoning to develop a clinically relevant survivor model to perform behavioral assessment and MRI imaging that will allow future development of biomarkers and therapeutics. METHODS: Four swine (10 kg) were divided into two groups: control (n = 2) and CO (n = 2). The CO group received CO at 2000 ppm for over 120 min followed by 30 min of re-oxygenation at room air for one swine and 150 min followed by 30 min of re-oxygenation for another swine. The two swine in the sham group received room air for 150 min. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. Following exposures, all surviving animals were observed for a 24-h period with neurobehavioral assessment and imaging. At the end of the 24-h period, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. RESULTS: While a preliminary ongoing study, animals in the CO group showed alterations in cerebral metabolism and cellular function in the acute exposure phase with possible sustained mitochondrial changes 24 h after the CO exposure ended. CONCLUSIONS: This preliminary research further establishes a large animal swine model investigating survivors of CO poisoning to measure translational metrics relevant to clinical medicine that includes a basic neurobehavioral assessment and post exposure cellular measures.


Assuntos
Intoxicação por Monóxido de Carbono , Animais , Suínos , Intoxicação por Monóxido de Carbono/terapia , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imageamento por Ressonância Magnética , Monóxido de Carbono/toxicidade , Monóxido de Carbono/metabolismo
3.
Metabolites ; 13(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999249

RESUMO

Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.

4.
J Neurointerv Surg ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898551

RESUMO

BACKGROUND: Endovascular therapy (EVT) has revolutionized the treatment of acute stroke, but large vessel recanalization does not always result in tissue-level reperfusion. Cerebral blood flow (CBF) is not routinely monitored during EVT. We aimed to leverage diffuse correlation spectroscopy (DCS), a novel transcranial optical imaging technique, to assess the relationship between microvascular CBF and post-EVT outcomes. METHODS: Frontal lobe CBF was monitored by DCS in 40 patients undergoing EVT. Baseline CBF deficit was calculated as the percentage of CBF impairment on pre-EVT CT perfusion. Microvascular reperfusion was calculated as the percentage increase in DCS-derived CBF that occurred with recanalization. The adequacy of reperfusion was defined by persistent CBF deficit, calculated as: baseline CBF deficit - microvascular reperfusion. A good functional outcome was defined as 90-day modified Rankin Scale score ≤2. RESULTS: Thirty-six of 40 patients achieved successful recanalization, in whom microvascular reperfusion in itself was not associated with infarct volume or functional outcome. However, patients with good functional outcomes had a smaller persistent CBF deficit (median 1% (IQR -11%-16%)) than patients with poor outcomes (median 28% (IQR 2-50%)) (p=0.02). Smaller persistent CBF deficit was also associated with smaller infarct volume (p=0.004). Multivariate models confirmed that persistent CBF deficit was independently associated with infarct volume and functional outcome. CONCLUSIONS: CBF augmentation alone does not predict post-EVT outcomes, but when microvascular reperfusion closely matches the baseline CBF deficit, patients experience favorable clinical and radiographic outcomes. By recognizing inadequate reperfusion, bedside CBF monitoring may provide opportunities to personalize post-EVT care aimed at CBF optimization.

5.
Front Pediatr ; 11: 1125985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425272

RESUMO

Background: Surgical procedures involving the aortic arch present unique challenges to maintaining cerebral perfusion, and optimal neuroprotective strategies to prevent neurological injury during such high-risk procedures are not completely understood. The use of antegrade cerebral perfusion (ACP) has gained favor as a neuroprotective strategy over deep hypothermic circulatory arrest (DHCA) due to the ability to selectively perfuse the brain. Despite this theoretical advantage over DHCA, there has not been conclusive evidence that ACP is superior to DHCA. One potential reason for this is the incomplete understanding of ideal ACP flow rates to prevent both ischemia from underflowing and hyperemia and cerebral edema from overflowing. Critically, there are no continuous, noninvasive measurements of cerebral blood flow (CBF) and cerebral oxygenation (StO2) to guide ACP flow rates and help develop standard clinical practices. The purpose of this study is to demonstrate the feasibility of using noninvasive, diffuse optical spectroscopy measurements of CBF and cerebral oxygenation during the conduct of ACP in human neonates undergoing the Norwood procedure. Methods: Four neonates prenatally diagnosed with hypoplastic left heart syndrome (HLHS) or a similar variant underwent the Norwood procedure with continuous intraoperative monitoring of CBF and cerebral oxygen saturation (StO2) using two non-invasive optical techniques, namely diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS). Changes in CBF and StO2 due to ACP were calculated by comparing these parameters during a stable 5 min period of ACP to the last 5 min of full-body CPB immediately prior to ACP initiation. Flow rates for ACP were left to the discretion of the surgeon and ranged from 30 to 50 ml/kg/min, and all subjects were cooled to 18°C prior to initiation of ACP. Results: During ACP, the continuous optical monitoring demonstrated a median (IQR) percent change in CBF of -43.4% (38.6) and a median (IQR) absolute change in StO2 of -3.6% (12.3) compared to a baseline period during full-body cardiopulmonary bypass (CPB). The four subjects demonstrated varying responses in StO2 due to ACP. ACP flow rates of 30 and 40 ml/kg/min (n = 3) were associated with decreased CBF during ACP compared to full-body CPB. Conversely, one subject with a higher flow6Di rate of 50 ml/kg/min demonstrated increased CBF and StO2 during ACP. Conclusions: This feasibility study demonstrates that novel diffuse optical technologies can be utilized for improved neuromonitoring in neonates undergoing cardiac surgery where ACP is utilized. Future studies are needed to correlate these findings with neurological outcomes to inform best practices during ACP in these high-risk neonates.

6.
IEEE J Biomed Health Inform ; 27(10): 4719-4727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478027

RESUMO

Monitoring physiological waveforms, specifically hemodynamic variables (e.g., blood pressure waveforms) and end-tidal CO2 (EtCO2), during pediatric cardiopulmonary resuscitation (CPR) has been demonstrated to improve survival rates and outcomes when compared to standard depth-guided CPR. However, waveform guidance has largely been based on thresholds for single parameters and therefore does not leverage all the information contained in multimodal data. We hypothesize that the combination of multimodal physiological features improves the prediction of the return of spontaneous circulation (ROSC), the clinical indicator of short-term CPR success. We used machine learning algorithms to evaluate features extracted from eight low-resolution (4 samples per minute) physiological waveforms to predict ROSC. The waveforms were acquired from the 2nd to 10th minute of CPR in pediatric swine models of cardiac arrest (N = 89, 8-12 kg). The waveforms were divided into segments with increasing length (both forward and backward) for feature extraction, and machine learning algorithms were trained for ROSC prediction. For the full CPR period (2nd to 10th minute), the area under the receiver operating characteristics curve (AUC) was 0.93 (95% CI: 0.87-0.99) for the multivariate model, 0.70 (0.55-0.85) for EtCO2 and 0.80 (0.67-0.93) for coronary perfusion pressure. The best prediction performances were achieved when the period from the 6th to the 10th minute was included. Poor predictions were observed for some individual waveforms, e.g., right atrial pressure. In conclusion, multimodal waveform features carry relevant information for ROSC prediction. Using multimodal waveform features in CPR guidance has the potential to improve resuscitation success and reduce mortality.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Humanos , Animais , Suínos , Criança , Retorno da Circulação Espontânea , Parada Cardíaca/terapia , Hemodinâmica , Pressão Sanguínea
7.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503137

RESUMO

Background: Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for the treatment of secondary neurological injury. Translational, preclinical research facilitates the development of solutions to address this growing issue but is hindered by a lack of available data frameworks and standards for the management, processing, and analysis of multimodal data sets. Methods: Here, we present a generalizable data framework that was implemented for large animal research at the Children's Hospital of Philadelphia to address this technological gap. The presented framework culminates in an interactive dashboard for exploratory analysis and filtered data set download. Results: Compared with existing clinical and preclinical data management solutions, the presented framework accommodates heterogeneous data types (single measure, repeated measures, time series, and imaging), integrates data sets across various experimental models, and facilitates dynamic visualization of integrated data sets. We present a use case of this framework for predictive model development for intra-arrest prediction of cardiopulmonary resuscitation outcome. Conclusions: The described preclinical data framework may serve as a template to aid in data management efforts in other translational research labs that generate heterogeneous data sets and require a dynamic platform that can easily evolve alongside their research.

8.
Biomed Opt Express ; 14(6): 2432-2448, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342705

RESUMO

In this study, we used diffuse optics to address the need for non-invasive, continuous monitoring of cerebral physiology following traumatic brain injury (TBI). We combined frequency-domain and broadband diffuse optical spectroscopy with diffuse correlation spectroscopy to monitor cerebral oxygen metabolism, cerebral blood volume, and cerebral water content in an established adult swine-model of impact TBI. Cerebral physiology was monitored before and after TBI (up to 14 days post injury). Overall, our results suggest that non-invasive optical monitoring can assess cerebral physiologic impairments post-TBI, including an initial reduction in oxygen metabolism, development of cerebral hemorrhage/hematoma, and brain swelling.

10.
Neurophotonics ; 9(3): 035004, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36039170

RESUMO

Significance: The critical closing pressure (CrCP) of cerebral circulation, as measured by diffuse correlation spectroscopy (DCS), is a promising biomarker of intracranial hypertension. However, CrCP techniques using DCS have not been assessed in gold standard experiments. Aim: CrCP is typically calculated by examining the variation of cerebral blood flow (CBF) during the cardiac cycle (with normal sinus rhythm). We compare this typical CrCP measurement with a gold standard obtained during the drops in arterial blood pressure (ABP) caused by rapid ventricular pacing (RVP) in patients undergoing invasive electrophysiologic procedures. Approach: Adults receiving electrophysiology procedures with planned ablation were enrolled for DCS CBF monitoring. CrCP was calculated from CBF and ABP data by three methods: (1) linear extrapolation of data during RVP ( CrCP RVP ; the gold standard); (2) linear extrapolation of data during regular heartbeats ( CrCP Linear ); and (3) fundamental harmonic Fourier filtering of data during regular heartbeats ( CrCP Fourier ). Results: CBF monitoring was performed prior to and during 55 episodes of RVP in five adults. CrCP RVP and CrCP Fourier demonstrated agreement ( R = 0.66 , slope = 1.05 (95%CI, 0.72 to 1.38). Agreement between CrCP RVP and CrCP Linear was worse; CrCP Linear was 8.2 ± 5.9 mmHg higher than CrCP RVP (mean ± SD; p < 0.001 ). Conclusions: Our results suggest that DCS-measured CrCP can be accurately acquired during normal sinus rhythm.

11.
Metabolites ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005609

RESUMO

Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an increased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correlations between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently shown promise for the prediction of postoperative white matter injury in this patient population, and invasive cerebral microdialysis biomarkers. We compared cerebral tissue oxygen saturation (StO2), relative total hemoglobin concentration (rTHC), and relative cerebral blood flow (rCBF) measured by optics against the microdialysis biomarkers of metabolic stress and injury (lactate-pyruvate ratio (LPR) and glycerol) in neonatal swine models of deep hypothermic cardiopulmonary bypass (DHCPB), selective antegrade cerebral perfusion (SACP), and deep hypothermic circulatory arrest (DHCA). All three optical parameters were negatively correlated with LPR and glycerol in DHCA animals. Elevation of LPR was found to precede the elevation of glycerol by 30-60 min. From these data, thresholds for the detection of hypoxic-ischemia-associated cerebral metabolic distress and neurological injury are suggested. In total, this work provides insight into the timing and mechanisms of neurological injury following hypoxic-ischemia and reports a quantitative relationship between hypoxic-ischemia severity and neurological injury that may inform DHCA management.

12.
J Med Toxicol ; 18(3): 214-222, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35482181

RESUMO

INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). The purpose of this ongoing study is the preliminary development of a porcine model of CO poisoning for investigation of alterations in brain mitochondrial physiology. METHODS: Four pigs (10 kg) were divided into two groups: Sham (n = 2) and CO (n = 2). Administration of a dose of CO at 2000 ppm to the CO group over 120 minutes followed by 30 minutes of re-oxygenation at room air. The control group received room air for 150 minutes. Non-invasive optical monitoring was used to measure CIV redox states. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. At the end of the exposure, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Snap frozen cortical tissue was also used for ATP concentrations and western blotting. RESULTS: While a preliminary ongoing study, animals in the CO group showed possible early decreases in brain mitochondrial respiration, citrate synthase density, CIV redox changes measured with optics, and an increase in the lactate-to-pyruvate ratio. CONCLUSIONS: There is a possible observable phenotype highlighting the important role of mitochondrial function in the injury of CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono , Animais , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução , Suínos
13.
Front Med (Lausanne) ; 7: 147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411712

RESUMO

Prevention of secondary damage is an important goal in the treatment of severe neurological conditions, such as major head trauma or stroke. However, there is currently a lack of non-invasive methods for monitoring cerebral physiology. Diffuse optical methods have been proposed as an inexpensive, non-invasive bedside monitor capable of providing neurophysiology information in neurocritical patients. However, the reliability of the technique to provide accurate longitudinal measurement during the clinical evolution of a patient remains largely unaddressed. Here, we report on the translation of a hybrid diffuse optical system combining frequency domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for real-time monitoring of cerebral physiology in a neuro intensive care unit (neuro-ICU). More specifically, we present a case study of a patient admitted with a high-grade aneurysmal subarachnoid hemorrhage, who was monitored throughout hospitalization. We show that the neurophysiological parameters measured by diffuse optics at the bedside are consistent with the clinical evolution of the patient at all the different stages following its brain lesion. These data provide support for clinical translation of DOS/DCS as a useful biomarker of neurophysiology in the neuro-ICU, particularly in locations where other clinical resources are limited.

14.
Neurotherapeutics ; 16(4): 1296-1303, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31140115

RESUMO

Intrathoracic pressure influences cardiac output and may affect cerebral blood flow (CBF). We aimed to quantify the cerebral hemodynamic response to intrathoracic pressure reduction in patients with acute ischemic stroke using a noninvasive respiratory impedance (RI) device. We assessed low-level (6 cm H2O) and high-level (12 cm H2O) RI in 17 spontaneously breathing patients within 72 h of anterior circulation acute ischemic stroke. Average age was 65 years, and 35% were female. Frontal lobe tissue perfusion and middle cerebral artery velocity (MCAv) were continuously monitored with optical diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound, respectively. High-level RI resulted in a 7% increase in MCAv (p = 0.004). MCAv varied across all studied levels (baseline vs low-level vs high-level, p = 0.006), with a significant test of trend (p = 0.002). Changes were not seen in DCS measured tissue perfusion by nonparametric pairwise comparison. Mixed effects regression analysis identified a small increase in both MCAv (low-level RI: ß 2.1, p < 0.001; high-level RI: ß 5.0, p < 0.001) and tissue-level flow (low-level RI: ß 5.4, p < 0.001; high-level RI: ß 5.9, p < 0.001). There was a small increase in mean arterial pressure during low-level and high-level RI, 4% (p = 0.013) and 4% (p = 0.017), respectively. End-tidal CO2 remained stable throughout the protocol. RI was well tolerated. Manipulating intrathoracic pressure via noninvasive RI was safe and produced a small but measurable increase in cerebral perfusion in acute ischemic stroke patients. Future studies are warranted to assess whether RI is feasible and tolerable for prolonged use in hyperacute stroke management.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Isquemia Encefálica/terapia , Circulação Cerebrovascular/fisiologia , Impedância Elétrica/uso terapêutico , Inalação/fisiologia , Acidente Vascular Cerebral/terapia , Idoso , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Estudos Prospectivos , Método Simples-Cego , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Ultrassonografia Doppler Transcraniana/métodos
15.
J Stroke Cerebrovasc Dis ; 28(6): 1483-1494, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30975462

RESUMO

INTRODUCTION: Mechanical thrombectomy is revolutionizing treatment of acute stroke due to large vessel occlusion (LVO). Unfortunately, use of the modified Thrombolysis in Cerebral Infarction score (mTICI) to characterize recanalization of the cerebral vasculature does not address microvascular perfusion of the distal parenchyma, nor provide more than a vascular "snapshot." Thus, little is known about tissue-level hemodynamic consequences of LVO recanalization. Diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) are promising methods for continuous, noninvasive, contrast-free transcranial monitoring of cerebral microvasculature. METHODS: Here, we use a combined DCS/DOS system to monitor frontal lobe hemodynamic changes during endovascular treatment of 2 patients with ischemic stroke due to internal carotid artery (ICA) occlusions. RESULTS AND DISCUSSION: The monitoring instrument identified a recanalization-induced increase in ipsilateral cerebral blood flow (CBF) with little or no concurrent change in contralateral CBF and extracerebral blood flow. The results suggest that diffuse optical monitoring is sensitive to intracerebral hemodynamics in patients with ICA occlusion and can measure microvascular responses to mechanical thrombectomy.


Assuntos
Isquemia Encefálica/terapia , Circulação Cerebrovascular , Lobo Frontal/irrigação sanguínea , Hemodinâmica , Microcirculação , Imagem Óptica/métodos , Imagem de Perfusão/métodos , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Análise Espectral , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA