Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0293406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060571

RESUMO

The AGMK1-9T7 cell line has been used to study neoplasia in tissue culture. By passage in cell culture, these cells evolved to become tumorigenic and metastatic in immunodeficient mice at passage 40. Of the 20 x 106 kidney cells originally plated, less than 2% formed the colonies that evolved to create this cell line. These cells could be the progeny of some type of kidney progenitor cells. To characterize these cells, we documented their renal lineage by their expression of PAX-2 and MIOX, detected by indirect immunofluorescence. These cells assessed by flow-cytometry expressed high levels of CD44, CD73, CD105, Sca-1, and GLI1 across all passages tested; these markers have been reported to be expressed by renal progenitor cells. The expression of GLI1 was confirmed by immunofluorescence and western blot analysis. Cells from passages 13 to 23 possessed the ability to differentiate into adipocytes, osteoblasts, and chondrocytes; after passage 23, their ability to form these cell types was lost. These data indicate that the cells that formed the AGMK1-9T7 cell line were GLI1+ perivascular, kidney, progenitor cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco , Neoplasias/metabolismo , Rim , Células Cultivadas
2.
PLoS One ; 17(10): e0275394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279283

RESUMO

To study neoplasia in tissue culture, cell lines representing the evolution of normal cells to tumor cells are needed. To produce such cells, we developed the AGMK1-9T7 cell line, established cell banks at 10-passage intervals, and characterized their biological properties. Here we examine the evolution of chromosomal DNA copy-number aberrations and miRNA expression in this cell line from passage 1 to the acquisition of a tumorigenic phenotype at passage 40. We demonstrated the use of a human microarray platform for DNA copy-number profiling of AGMK1-9T7 cells using knowledge of synteny to 'recode' data from human chromosome coordinates to those of the African green monkey. This approach revealed the accumulation of DNA copy-number gains and losses in AGMK1-9T7 cells from passage 3 to passage 40, which spans the period in which neoplastic transformation occurred. These alterations occurred in the sequences of genes regulating DNA copy-number imbalance of several genes that regulate endothelial cell angiogenesis, survival, migration, and proliferation. Regarding miRNA expression, 195 miRNAs were up- or down-regulated at passage 1 at levels that appear to be biologically relevant (i.e., log2 fold change >2.0 (q<0.05)). At passage 10, the number of up/down-regulated miRNAs fell to 63; this number increased to 93 at passage 40. Principal-component analysis grouped these miRNAs into 3 clusters; miRNAs in sub-clusters of these groups could be correlated with initiation, promotion, and progression, stages that have been described for neoplastic development. Thirty-four of the AGMK1-9T7 miRNAs have been associated with these stages in human cancer. Based on these data, we propose that the evolution of AGMK1-9T7 cells represents a detailed model of neoplasia in vitro.


Assuntos
MicroRNAs , Segunda Neoplasia Primária , Neoplasias , Animais , Humanos , Chlorocebus aethiops , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Carcinogênese/genética , Variações do Número de Cópias de DNA/genética , Aberrações Cromossômicas , Segunda Neoplasia Primária/genética , DNA , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
3.
Vaccine X ; 1: 100004, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-31384726

RESUMO

Immortalized cell lines used to produce vaccines are expected to be described in terms of their tumorigenicity. However, current in vivo tumorigenicity assays can be time-consuming and results can be equivocal, especially for weakly tumorigenic cells. Basement membrane extract (BME) derived from the Engelbreth-Holm-Swarm mouse tumor, such as Matrigel and Cultrex, consists of laminin, collagen IV, entactin, heparan sulfate, and proteoglycans, as well as biologically active peptides and growth factors. For nearly three decades, BME has been used in cancer research to enhance tumorigenicity assays (both tumor "take" as well as tumor growth are substantially improved). We assessed the feasibility of using BME to facilitate the evaluation of vaccine cell substrate tumorigenicity. Vero cells (WHO 10-87) were serially passaged and banked at every ten passages beginning with p140; for the present study, low-passage Vero cells (Vero LP, originating from cells banked at p140) and high-passage Vero cells (Vero HP, originating from cells banked at p250) were used. In addition, Vero TPX2 and Vero NM1, cell lines established from tumors formed in nude mice by Vero HP cells, as well as other cell lines relevant to vaccine production (HeLa, MDCK, 293, and ARPE-19), were assessed. Female adult athymic nude mice were injected subcutaneously with cells in the absence or presence of BME. We observed that the tumorigenicity of ARPE-19 cells as well as Vero cells below passage 258 (Vero LP and Vero HP; previously characterized as non-tumorigenic or weakly tumorigenic, respectively) was not enhanced by BME. In contrast, BME shortened the latency and decreased the tumor-producing cell dose of HeLa, 293, and MDCK cells as well as the tumorigenic Vero derivatives TPX2 and NM1. Thus, responsiveness to BME may reflect the status of the neoplastic process and possibly serve as a useful trait for better defining the tumorigenic phenotype of cells.

4.
Vaccine ; 35(41): 5503-5509, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28434690

RESUMO

Patterns of microRNA expression appear to delineate the process of spontaneous neoplastic development-transformation (SPNDT) occurring in the African green monkey kidney (AGMK) VERO cell line (Teferedegne et al., 2010). Analysis of microarray data identified 6 microRNAs whose high-level of expression peaked when the World Health Organization 10-87 VERO cells became tumorigenic at passage (p) 190. Six miRNAs were identified as potential biomarkers for the expression of the VERO-cell tumorigenic phenotype (Teferedegne et al., 2014). However, the question remained whether these miRNA biomarkers are specific for VERO cells or can be generalizable to other cells originating from African green monkey kidneys. To examine miRNA expression patterns in AGMK cells at lower passage levels and to re-examine the identified miRNAs as biomarkers associated with tumorigenic phenotype of VERO cells in another independently-derived line, we established a new line of African green monkey kidney cells (AGMK1-9T7) by serially passaging kidney cells from another AGM. The AGMK1-9T7 cells became tumorigenic in nude mice at p40. Evaluation of miRNA expression at intervals from p1 to p40 revealed similarities between the evolution of miRNA expression during SPNDT in the AGMK1-9T7 cells and the 10-87 VERO cells. Four of the 6 potential biomarker miRNAs (miR-376a, miR-654-3p, miR-543, miR-134) in our earlier reports were detected by microarray in the AGMK1-9T7 cells; RT-qPCR analysis detected all 6 miRNAs. All 6 of these miRNAs have been associated with human tumors. Detection of the same miRNAs associated with the tumorigenic p40 AGMK1-9T7 cells and tumorigenic 10-87 VERO cells confirmed our proposal that these miRNA represent biomarkers for the tumor-forming ability of AGMK/VERO cells. The similarities of expression of miRNAs in different AGMK cell lines that were established 50years apart suggest that the process of SPNDT in these non-human primate cells in tissue culture is based upon similar genetic and epigenetic mechanisms.


Assuntos
Biomarcadores/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Rim/patologia , MicroRNAs/genética , Neoplasias/genética , Células Vero/patologia , Animais , Carcinogênese/patologia , Linhagem Celular , Transformação Celular Neoplásica/patologia , Chlorocebus aethiops , Feminino , Humanos , Camundongos Nus , Neoplasias/patologia
5.
PLoS One ; 9(10): e108926, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302710

RESUMO

As part of safety studies to evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cells, we have been developing in vivo assays to detect and quantify the oncogenic activity of DNA. We generated a plasmid expressing both an activated human H-ras gene and murine c-myc gene and showed that 1 µg of this plasmid, pMSV-T24-H-ras/MSV-c-myc, was capable of inducing tumors in newborn NIH Swiss mice. However, to be able to detect the oncogenicity of dominant activated oncogenes in cellular DNA, a more sensitive system was needed. In this paper, we demonstrate that the newborn CD3 epsilon transgenic mouse, which is defective in both T-cell and NK-cell functions, can detect the oncogenic activity of 25 ng of the circular form of pMSV-T24-H-ras/MSV-c-myc. When this plasmid was inoculated as linear DNA, amounts of DNA as low as 800 pg were capable of inducing tumors. Animals were found that had multiple tumors, and these tumors were independent and likely clonal. These results demonstrate that the newborn CD3 epsilon mouse is highly sensitive for the detection of oncogenic activity of DNA. To determine whether it can detect the oncogenic activity of cellular DNA derived from four human tumor-cell lines (HeLa, A549, HT-1080, and CEM), DNA (100 µg) was inoculated into newborn CD3 epsilon mice both in the presence of 1 µg of linear pMSV-T24-H-ras/MSV-c-myc as positive control and in its absence. While tumors were induced in 100% of mice with the positive-control plasmid, no tumors were induced in mice receiving any of the tumor DNAs alone. These results demonstrate that detection of oncogenes in cellular DNA derived from four human tumor-derived cell lines in this mouse system was not possible; the results also show the importance of including a positive-control plasmid to detect inhibitory effects of the cellular DNA.


Assuntos
Genes myc , Genes ras , Células Matadoras Naturais/patologia , Camundongos/genética , Neoplasias/genética , Plasmídeos/genética , Linfócitos T/patologia , Animais , Linhagem Celular Tumoral , DNA Circular/genética , DNA de Neoplasias/genética , Humanos , Células Matadoras Naturais/metabolismo , Camundongos/fisiologia , Camundongos Transgênicos , Neoplasias/patologia , Linfócitos T/metabolismo
6.
Vaccine ; 32(37): 4799-805, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25024114

RESUMO

MicroRNA expression appears to capture the process of neoplastic development in vitro in the VERO line of African green monkey kidney (AGMK) cells (Teferedegne et al. PLoS One 2010;5(12):e14416). In that study, specific miRNA signatures were correlated with the transition, during serial tissue-culture passage, of low-density passaged 10-87 VERO cells from a non-tumorigenic phenotype at passage (p) 148 to a tumorigenic phenotype at p256. In the present study, six miRNAs (miR-376a, miR-654-3p, miR-543, miR-299-3p, miR-134 and miR-369-3p) were chosen from the identified signature miRNAs for evaluation of their use as potential biomarkers to track the progression of neoplastic development in VERO cells. Cells from the 10-87 VERO cell line at passage levels from p148 to p256 were inoculated into newborn and adult athymic nude mice. No tumors were observed in animals inoculated with cells from p148 to p186. In contrast, tumor incidences of 20% developed only in newborn mice that received 10-87 VERO cells at p194, p234 and p256. By qPCR profiling of the signature miRNAs of 10-87 VERO cells from these cell banks, we identified p194 as the level at which signature miRNAs elevated concurrently with the acquisition of tumorigenic phenotype with similar levels expressed beyond this passage. In wound-healing assays at 10-passage intervals between p150 to p250, the cells displayed a progressive increase in migration from p165 to p186; beginning at p194 and higher passages thereafter, the cells exhibited the highest rates of migration. By qPCR analysis, the same signature miRNAs were overexpressed with concomitant acquisition of the tumorigenic phenotype in another lineage of 10-87 VERO cells passaged independently at high density. Correlation between the passages at which the cells expressed a tumorigenic phenotype and the passages representing peaks in expression levels of signature miRNAs indicates that these miRNAs are potential biomarkers for the expression of the VERO cell tumorigenic phenotype.


Assuntos
Biomarcadores , Transformação Celular Neoplásica/genética , MicroRNAs/genética , Células Vero/citologia , Animais , Movimento Celular , Chlorocebus aethiops , Camundongos Nus , Fenótipo
7.
Comp Med ; 63(4): 323-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24209967

RESUMO

Tumors that formed in newborn nude mice that were inoculated with 10(7) Madin-Darby canine kidney (MDCK) cells were associated with a failure-to-thrive (FTT) syndrome consisting of growth retardation, lethargy, weakness, and dehydration. Scoliosis developed in 41% of affected pups. Pups were symptomatic by week 2; severely affected pups became moribund and required euthanasia within 3 to 4 wk. Mice with FTT were classified into categories of mild, moderate, and severe disease by comparing their weight with that of age-matched normal nude mice. The MDCK-induced tumors were adenocarcinomas that invaded adjacent muscle, connective tissue, and bone; 6 of the 26 pups examined had lung metastases. The induction of FTT did not correlate with cell-line aggressiveness as estimated by histopathology or the efficiency of tumor formation (tumor-forming dose 50% endpoint range = 10(2.8) to 10(7.5)); however, tumor invasion of the paravertebral muscles likely contributed to the scoliosis noted. In contrast to the effect of MDCK cells, tumor formation observed in newborn mice inoculated with highly tumorigenic, human-tumor-derived cell lines was not associated with FTT development. We suggest that tumor formation and FTT are characteristics of these MDCK cell inocula and that FTT represents a new syndrome that may be similar to the cachexia that develops in humans with cancer or other diseases.


Assuntos
Insuficiência de Crescimento/veterinária , Animais , Animais Recém-Nascidos , Cães , Insuficiência de Crescimento/patologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Nus
8.
Comp Med ; 61(3): 243-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21819694

RESUMO

The mechanisms by which cells spontaneously immortalized in tissue culture develop the capacity to form tumors in vivo likely embody fundamental processes in neoplastic development. The evolution of Madin-Darby canine kidney (MDCK) cells from presumptively normal kidney cells to immortalized cells that become tumorigenic represents an example of neoplastic development in vitro. Studies of the mechanisms by which spontaneously immortalized cells develop the capacity to form tumors would benefit from quantitative in vivo assays. Most mechanistic correlations are evaluated by using single-dose tumor-induction experiments, which indicate only whether cells are or are not tumorigenic. Here we used quantitative tumorigenicity assays to measure dose-and time-dependent tumor development in nude mice of 3 lots of unmodified MDCK cells. The results revealed lot-to-lot variations in the tumorigenicity of MDCK cells, which were reflected by their tumor-inducing efficiency (threshold cell dose represented by mean tumor-producing dose; log(10) 50% endpoints of 5.2 for vial 1 and 4.4 for vial 2, and a tumor-producing dose of 5.8 for vial 3) and mean tumor latency (vial 1,6.6 wk; vial 2,2.9 wk; and vial 3,3.8 wk). These studies provide a reference for further characterization of the MDCK cell neoplastic phenotype and may be useful in delineating aspects of neoplastic development in vitro that determine tumor-forming capacity. Such data also are useful when considering MDCK cells as a reagent for vaccine manufacture.


Assuntos
Linhagem Celular , Transformação Celular Neoplásica , Cães , Fenótipo , Animais , Testes de Carcinogenicidade , Camundongos , Camundongos Nus , Neoplasias/patologia
9.
Int J Biol Sci ; 6(2): 151-62, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20376206

RESUMO

Vaccines contain residual DNA derived from the cells used to produce them. As part of our investigation to assess the risk of this cellular DNA, we are developing a quantitative in vivo assay to assess the oncogenicity of DNA. In an earlier study, we had generated expression plasmids for two oncogenes--human activated T24-H-ras and murine c-myc--and had shown that these two plasmids, pMSV-T24-H-ras and pMSV-c-myc, could act in concert to induce tumors in mice, although the efficiency was low. In this study, we took two approaches to increase the oncogenic efficiency: 1) both oncogene-expression cassettes were placed on the same plasmid; 2) transfection facilitators, which increase DNA uptake and expression in vitro, were tested. The dual-expression plasmid, pMSV-T24-H-ras/MSV-c-myc, is about 20-fold more efficient at tumor induction in newborn NIH Swiss mice than the separate expression plasmids, with tumors being induced with 1 microg of the dual-expression plasmid DNA. However, none of the transfection facilitators tested increased the efficiency of tumor induction. Based on these data, the dual-expression plasmid pMSV-T24-H-ras/MSV-c-myc will be used as the positive control to develop a sensitive and quantitative animal assay that can be used to assess the oncogenic activity of DNA.


Assuntos
DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Plasmídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas ras/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Oncogenes , Reação em Cadeia da Polimerase/métodos , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA