Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 24(22): 3998-4002, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35649263

RESUMO

Pseudonochelin (1), a siderophore from a marine-derived Pseudonocardia sp. bacterium, was discovered using genome mining and metabolomics technologies. A 5-aminosalicylic acid (5-ASA) unit, not previously found in siderophore natural products, was identified in 1. Annotation of a putative psn biosynthetic gene cluster combined with bioinformatics and isotopic enrichment studies enabled us to propose the biosynthesis of 1. Moreover, 1 was found to display in vitro and in vivo antibacterial activity in an iron-dependent fashion.


Assuntos
Mesalamina , Sideróforos , Bactérias , Metabolômica , Família Multigênica , Pseudonocardia
2.
Nat Commun ; 12(1): 6235, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716343

RESUMO

The fungal pathogen Candida albicans can form biofilms that protect it from drugs and the immune system. The biofilm cells release extracellular vesicles (EVs) that promote extracellular matrix formation and resistance to antifungal drugs. Here, we define functions for numerous EV cargo proteins in biofilm matrix assembly and drug resistance, as well as in fungal cell adhesion and dissemination. We use a machine-learning analysis of cargo proteomic data from mutants with EV production defects to identify 63 candidate gene products for which we construct mutant and complemented strains for study. Among these, 17 mutants display reduced biofilm matrix accumulation and antifungal drug resistance. An additional subset of 8 cargo mutants exhibit defects in adhesion and/or dispersion. Representative cargo proteins are shown to function as EV cargo through the ability of exogenous wild-type EVs to complement mutant phenotypic defects. Most functionally assigned cargo proteins have roles in two or more of the biofilm phases. Our results support that EVs provide community coordination throughout biofilm development in C. albicans.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Farmacorresistência Fúngica/fisiologia , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/metabolismo , Animais , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/microbiologia , Adesão Celular/efeitos dos fármacos , Cateteres Venosos Centrais/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Matriz Extracelular/química , Vesículas Extracelulares/química , Feminino , Proteínas Fúngicas/genética , Mutação , Ratos
3.
Metallomics ; 13(2)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595656

RESUMO

N-heterocyclic silver carbene compounds have been extensively studied and shown to be active agents against a host of pathogenic bacteria and fungi. By incorporating hypothesized virulence targeting substituents into NHC-silver systems via salt metathesis, an atom-efficient complexation process can be used to develop new complexes to target the passive and active systems of a microbial cell. The incorporation of fatty acids and an FtsZ inhibitor have been achieved, and creation of both the intermediate salt and subsequent silver complex has been streamlined into a continuous flow process. Biological evaluation was conducted with in vitro toxicology assays showing these novel complexes had excellent inhibition against Gram-negative strains E. coli, P. aeruginosa, and K. pneumoniae; further studies also confirmed the ability to inhibit biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) and C. Parapsilosis. In vivo testing using a murine thigh infection model showed promising inhibition of MRSA for the lead compound SBC3, which is derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/síntese química , Complexos de Coordenação/síntese química , Ácidos Graxos/síntese química , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Metano/análogos & derivados , Metano/síntese química , Metano/química , Metano/farmacologia , Modelos Moleculares
4.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373326

RESUMO

The emergence of drug-resistant fungi has prompted an urgent threat alert from the US Centers for Disease Control (CDC). Biofilm assembly by these pathogens further impairs effective therapy. We recently identified an antifungal, turbinmicin, that inhibits the fungal vesicle-mediated trafficking pathway and demonstrates broad-spectrum activity against planktonically growing fungi. During biofilm growth, vesicles with unique features play a critical role in the delivery of biofilm extracellular matrix components. As these components are largely responsible for the drug resistance associated with biofilm growth, we explored the utility of turbinmicin in the biofilm setting. We found that turbinmicin disrupted extracellular vesicle (EV) delivery during biofilm growth and that this impaired the subsequent assembly of the biofilm matrix. We demonstrated that elimination of the extracellular matrix rendered the drug-resistant biofilm communities susceptible to fungal killing by turbinmicin. Furthermore, the addition of turbinmicin to otherwise ineffective antifungal therapy potentiated the activity of these drugs. The underlying role of vesicles explains this dramatic activity and was supported by phenotype reversal with the addition of exogenous biofilm EVs. This striking capacity to cripple biofilm assembly mechanisms reveals a new approach to eradicating biofilms and sheds light on turbinmicin as a promising anti-biofilm drug.


Assuntos
Benzopiranos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/fisiologia , Vesículas Extracelulares/metabolismo , Isoquinolinas/farmacologia , Biofilmes/crescimento & desenvolvimento
5.
Nat Commun ; 11(1): 6429, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353950

RESUMO

Candida auris is an emerging fungal pathogen that exhibits resistance to multiple drugs, including the most commonly prescribed antifungal, fluconazole. Here, we use a combinatorial screening approach to identify a bis-benzodioxolylindolinone (azoffluxin) that synergizes with fluconazole against C. auris. Azoffluxin enhances fluconazole activity through the inhibition of efflux pump Cdr1, thus increasing intracellular fluconazole levels. This activity is conserved across most C. auris clades, with the exception of clade III. Azoffluxin also inhibits efflux in highly azole-resistant strains of Candida albicans, another human fungal pathogen, increasing their susceptibility to fluconazole. Furthermore, azoffluxin enhances fluconazole activity in mice infected with C. auris, reducing fungal burden. Our findings suggest that pharmacologically targeting Cdr1 in combination with azoles may be an effective strategy to control infection caused by azole-resistant isolates of C. auris.


Assuntos
Azóis/farmacologia , Candida/patogenicidade , Oxindóis/farmacologia , Animais , Antifúngicos/análise , Antifúngicos/química , Antifúngicos/farmacologia , Azóis/análise , Azóis/química , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Deleção de Genes , Humanos , Camundongos , Oxindóis/química , Virulência/efeitos dos fármacos
6.
Science ; 370(6519): 974-978, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214279

RESUMO

New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.


Assuntos
Antifúngicos/farmacologia , Benzopiranos/farmacologia , Candida/efeitos dos fármacos , Candidíase Invasiva/tratamento farmacológico , Farmacorresistência Fúngica Múltipla , Isoquinolinas/farmacologia , Micromonospora/química , Urocordados/microbiologia , Animais , Antifúngicos/química , Antifúngicos/uso terapêutico , Benzopiranos/química , Benzopiranos/uso terapêutico , Modelos Animais de Doenças , Proteínas Fúngicas/metabolismo , Isoquinolinas/química , Isoquinolinas/uso terapêutico , Camundongos , Microbiota , Proteínas de Transferência de Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA