Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Infect Dis ; 228(Suppl 7): S559-S570, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37610176

RESUMO

BACKGROUND: Marburg virus (MARV) has caused numerous sporadic outbreaks of severe hemorrhagic fever in humans. Human case fatality rates of Marburg virus disease (MVD) outbreaks range from 20% to 90%. Viral genotypes of MARV can differ by over 20%, suggesting variable virulence between lineages may accompany this genetic divergence. Comparison of existing animal models of MVD employing different strains of MARV support differences in virulence across MARV genetic lineages; however, there are few systematic comparisons in models that recapitulate human disease available. METHODS: We compared features of disease pathogenesis in uniformly lethal hamster models of MVD made possible through serial adaptation in rodents. RESULTS: No further adaptation from a previously reported guinea pig-adapted (GPA) isolate of MARV-Angola was necessary to achieve uniform lethality in hamsters. Three passages of GPA MARV-Ci67 resulted in uniform lethality, where 4 passages of a GPA Ravn virus was 75% lethal. Hamster-adapted MARV-Ci67 demonstrated delayed time to death, protracted weight loss, lower viral burden, and slower histologic alteration compared to GPA MARV-Angola. CONCLUSIONS: These data suggest isolate-dependent virulence differences are maintained even after serial adaptation in rodents and may serve to guide choice of variant and model used for development of vaccines or therapeutics for MVD.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Cricetinae , Humanos , Cobaias , Animais , Mesocricetus , Virulência , Angola
2.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445779

RESUMO

The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.


Assuntos
COVID-19 , Vírus Nipah , Estomatite Vesicular , Vacinas Virais , Animais , Humanos , Chlorocebus aethiops , Vírus Nipah/genética , Anticorpos Antivirais , Vacinas Virais/genética , Vesiculovirus/genética
3.
J Clin Oncol ; 40(33): 3808-3816, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-35759727

RESUMO

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Idoso , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunização , Vacinação , Anticorpos Neutralizantes , RNA Mensageiro , Vacinas de mRNA
4.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447072

RESUMO

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca , RNA Mensageiro
5.
Proc Natl Acad Sci U S A ; 119(12): e2200065119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286211

RESUMO

SignificanceConcern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge.


Assuntos
Infecções por Henipavirus/veterinária , Vírus Nipah/imunologia , Doenças dos Primatas/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Biomarcadores , Vetores Genéticos , Estimativa de Kaplan-Meier , Testes de Neutralização , Avaliação de Resultados em Cuidados de Saúde , Doenças dos Primatas/diagnóstico , Doenças dos Primatas/mortalidade , Doenças dos Primatas/virologia , Vacinação , Carga Viral
6.
Cell Rep Med ; 3(2): 100529, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35233550

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant emerged in November 2021 and consists of several mutations within the spike. We use serum from mRNA-vaccinated individuals to measure neutralization activity against omicron in a live-virus assay. At 2-4 weeks after a primary series of vaccinations, we observe a 30-fold reduction in neutralizing activity against omicron. Six months after the initial two-vaccine doses, sera from naive vaccinated subjects show no neutralizing activity against omicron. In contrast, COVID-19-recovered individuals 6 months after receiving the primary series of vaccinations show a 22-fold reduction, with the majority of the subjects retaining neutralizing antibody responses. In naive individuals following a booster shot (third dose), we observe a 14-fold reduction in neutralizing activity against omicron, and over 90% of subjects show neutralizing activity. These findings show that a third dose is required to provide robust neutralizing antibody responses against the omicron variant.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinação/métodos , Adulto , Idoso , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Estudos de Coortes , Feminino , Humanos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Adulto Jovem
7.
Nature ; 603(7902): 687-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062015

RESUMO

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Assuntos
COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Cricetinae , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Viral
9.
Clin Infect Dis ; 75(1): e350-e353, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35037030

RESUMO

We describe rapid detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant using targeted spike single-nucleotide polymorphism polymerase chain reaction and viral genome sequencing. This case occurred in a fully vaccinated and boosted returning traveler with mild symptoms who was identified through community surveillance rather than clinical care.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Humanos , Reação em Cadeia da Polimerase , SARS-CoV-2/genética
10.
medRxiv ; 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931200

RESUMO

The Omicron variant of SARS-CoV-2 is raising concerns because of its increased transmissibility and potential for reduced susceptibility to antibody neutralization. To assess the potential risk of this variant to existing vaccines, serum samples from mRNA-1273 vaccine recipients were tested for neutralizing activity against Omicron and compared to neutralization titers against D614G and Beta in live virus and pseudovirus assays. Omicron was 41-84-fold less sensitive to neutralization than D614G and 5.3-7.4-fold less sensitive than Beta when assayed with serum samples obtained 4 weeks after 2 standard inoculations with 100 µg mRNA-1273. A 50 µg boost increased Omicron neutralization titers and may substantially reduce the risk of symptomatic vaccine breakthrough infections.

11.
Behav Brain Res ; 415: 113506, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352292

RESUMO

Recent preclinical studies have reported that pretreatment with the novel and highly-selective dopamine D3 receptor (D3R) antagonists R-VK4-40 or VK4-116 attenuates the abuse-related behavioral effects of oxycodone while enhancing its analgesic properties. However, whether these observed effects are generalizable to the broad class of D3R antagonists and/or extend to opioids other than oxycodone has not been extensively explored. The present study sought to assess the impact of pretreatment with another selective D3R antagonist, PG01037, on several behavioral effects of morphine in mice. C57Bl/6 J mice were pretreated with PG01037 (0-10 mg/kg) and tested for 1) hyperlocomotion induced by acute morphine (5.6-56 mg/kg), 2) locomotor sensitization following repeated morphine (56 mg/kg), 3) antinociception following acute morphine (18 mg/kg), and 4) catalepsy following administration of PG01037 alone or in combination with morphine (56 mg/kg). PG01037 dose-dependently attenuated morphine-induced hyperlocomotion and morphine-induced antinociception at doses that did not alter basal locomotion or nociception alone, but did not prevent the induction of locomotor sensitization following repeated morphine administration. Moreover, PG01037 did not induce catalepsy either alone or in combination with morphine. These results suggest that attenuation of acute opioid-induced hyperactivity may be a behavioral effect shared among D3R-selective antagonists, thus supporting continued investigations into their use as potential treatments for opioid use disorder. However, PG01037 is unlike newer, highly-selective D3R antagonists in its capacity to reduce opioid-induced antinociception, indicating that modulation of opioid analgesia may vary across different D3R antagonists.


Assuntos
Acatisia Induzida por Medicamentos/tratamento farmacológico , Benzamidas/farmacologia , Morfina/farmacologia , Atividade Motora/efeitos dos fármacos , Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Piridinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Piridinas/administração & dosagem
12.
Psychopharmacology (Berl) ; 238(10): 2755-2773, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34184126

RESUMO

RATIONALE: In rodents, exposure to novel environments or psychostimulants promotes locomotion. Indeed, locomotor reactivity to novelty strongly predicts behavioral responses to psychostimulants in animal models of addiction. RGS14 is a plasticity-restricting protein with unique functional domains that enable it to suppress ERK-dependent signaling as well as regulate G protein activity. Although recent studies show that RGS14 is expressed in multiple limbic regions implicated in psychostimulant- and novelty-induced hyperlocomotion, its function has been examined mostly in the context of hippocampal physiology and memory. OBJECTIVE: We investigated whether RGS14 modulates novelty- and cocaine-induced locomotion (NIL and CIL, respectively) and neuronal activity. METHODS: We assessed Rgs14 knockout (RGS14 KO) mice and wild-type (WT) littermate controls using NIL and CIL behavioral tests, followed by quantification of c-fos and phosphorylated ERK (pERK) induction in limbic regions that normally express RGS14. RESULTS: RGS14 KO mice were less active than WT controls in the NIL test, driven by avoidance of the center of the novel environment. By contrast, RGS14 KO mice demonstrated augmented peripheral locomotion in the CIL test conducted in either a familiar or novel environment. RGS14 KO mice exhibited increased thigmotaxis, as well as greater c-fos and pERK induction in the central amygdala and dorsal hippocampus, when cocaine and novelty were paired. CONCLUSIONS: RGS14 KO mice exhibited anti-correlated locomotor responses to novelty and cocaine, but displayed increased thigmotaxis in response to either stimuli which was augmented by their combination. Our findings also suggest RGS14 may reduce neuronal activity in limbic subregions by inhibiting ERK-dependent signaling.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Sistema de Sinalização das MAP Quinases , Proteínas RGS , Animais , Cocaína/farmacologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas RGS/metabolismo
13.
J Neurosci ; 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34074735

RESUMO

Repeated cocaine exposure causes dendritic spine loss in the orbitofrontal cortex, which might contribute to poor orbitofrontal cortical function following drug exposure. One challenge, however, has been verifying links between neuronal structural plasticity and behavior, if any. Here we report that cocaine self-administration triggers the loss of dendritic spines on excitatory neurons in the orbitofrontal cortex of male and female mice (as has been reported in rats). To understand functional consequences, we locally ablated neuronal ß1-integrins, cell adhesion receptors that adhere cells to the extracellular matrix and thus support dendritic spine stability. Degradation of ß1-integrin tone: 1) caused dendritic spine loss; 2) exaggerated cocaine-seeking responses in a cue-induced reinstatement test; and 3) impaired the ability of mice to integrate new learning into familiar routines - a key function of the orbitofrontal cortex. Stimulating Abl-related gene (Arg) kinase, over-expressing Proline-rich tyrosine kinase (Pyk2), and inhibiting Rho-associated coiled-coil containing kinase (ROCK) corrected response strategies, uncovering a ß1-integrin-mediated signaling axis that controls orbitofrontal cortical function. Finally, use of a combinatorial gene silencing/chemogenetic strategy revealed that ß1-integrins support the ability of mice to integrate new information into established behaviors by sustaining orbitofrontal cortical connections with the basolateral amygdala.SIGNIFICANCE STATEMENTCocaine degenerates dendritic spines in the orbitofrontal cortex, a region of the brain involved in interlacing new information into established behaviors. One challenge has been verifying links between cellular structural stability and behavior, if any. In this second of two related investigations, we study integrin family receptors, which adhere cells to the extracellular matrix and thereby stabilize dendritic spines (see also DePoy et al., 2019, Journal of Neuroscience). We reveal that ß1-integrins in the orbitofrontal cortex control food- and cocaine-seeking behaviors. For instance, ß1-integrin loss amplifies cocaine-seeking behavior and impairs the ability of mice to integrate new learning into familiar routines. We identify likely intracellular signaling partners by which ß1-integrins support orbitofrontal cortical function and connectivity with the basolateral amygdala.

14.
Sci Transl Med ; 13(588)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827978

RESUMO

Ebola virus (EBOV) hemorrhagic fever outbreaks have been challenging to deter due to the lack of health care infrastructure in disease-endemic countries and a corresponding inability to diagnose and contain the disease at an early stage. EBOV vaccines and therapies have improved disease outcomes, but the advent of an affordable, easily accessed, mass-produced rapid diagnostic test (RDT) that matches the performance of more resource-intensive polymerase chain reaction (PCR) assays would be invaluable in containing future outbreaks. Here, we developed and demonstrated the performance of a new ultrasensitive point-of-care immunoassay, the EBOV D4 assay, which targets the secreted glycoprotein of EBOV. The EBOV D4 assay is 1000-fold more sensitive than the U.S. Food and Drug Administration-approved RDTs and detected EBOV infection earlier than PCR in a standard nonhuman primate model. The EBOV D4 assay is suitable for low-resource settings and may facilitate earlier detection, containment, and treatment during outbreaks of the disease.


Assuntos
Doença pelo Vírus Ebola , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Ebolavirus , Glicoproteínas , Doença pelo Vírus Ebola/diagnóstico , Imunoensaio , Reação em Cadeia da Polimerase
15.
Neuropsychopharmacology ; 46(8): 1535-1543, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33911187

RESUMO

Both the noradrenergic and galaninergic systems have been implicated in stress-related neuropsychiatric disorders, and these two neuromodulators are co-released from the stress-responsive locus coeruleus (LC); however, the individual contributions of LC-derived norepinephrine (NE) and galanin to behavioral stress responses are unclear. Here we aimed to disentangle the functional roles of co-released NE and galanin in stress-induced behavior. We used foot shock, optogenetics, and behavioral pharmacology in wild-type (WT) mice and mice lacking either NE (Dbh-/-) or galanin (GalcKO-Dbh) specifically in noradrenergic neurons to isolate the roles of these co-transmitters in regulating anxiety-like behavior in the elevated zero maze (EZM) either immediately or 24 h following stress. Foot shock and optogenetic LC stimulation produced immediate anxiety-like behavior in WT mice, and the effects of foot shock persisted for 24 h. NE-deficient mice were resistant to the anxiogenic effects of acute stress and optogenetic LC stimulation, while mice lacking noradrenergic-derived galanin displayed typical increases in anxiety-like behavior. However, when tested 24 h after foot shock, both Dbh-/- and GalcKO-Dbh mice lacked normal expression of anxiety-like behavior. Pharmacological rescue of NE, but not galanin, in knockout mice during EZM testing was anxiogenic. In contrast, restoring galanin, but not NE, signaling during foot shock normalized stress-induced anxiety-like behavior 24 h later. These results indicate that NE and noradrenergic-derived galanin play complementary, but distinguishable roles in behavioral responses to stress. NE is required for the expression of acute stress-induced anxiety, while noradrenergic-derived galanin mediates the development of more persistent responses following a stressor.


Assuntos
Neurônios Adrenérgicos , Norepinefrina , Neurônios Adrenérgicos/metabolismo , Animais , Ansiedade , Galanina/genética , Galanina/metabolismo , Locus Cerúleo/metabolismo , Camundongos
16.
Addict Biol ; 26(5): e13037, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33768673

RESUMO

The neuropeptide galanin is reported to attenuate opioid withdrawal symptoms, potentially by reducing neuronal hyperactivity in the noradrenergic locus coeruleus (LC) via galanin receptor 1 (GalR1). We evaluated this mechanism by using RNAscope in situ hybridization to characterize GalR1 mRNA distribution in the dorsal pons and to compare galanin and GalR1 mRNA expression in tyrosine hydroxylase-positive (TH+) LC cells at baseline and following chronic morphine or precipitated withdrawal. We then used genetically altered mouse lines and pharmacology to test whether noradrenergic galanin (NE-Gal) modulates withdrawal symptoms. RNAscope revealed that, while GalR1 signal was evident in the dorsal pons, 80.7% of the signal was attributable to TH- neurons outside the LC. Galanin and TH mRNA were abundant in LC cells at baseline and were further increased by withdrawal, whereas low basal GalR1 mRNA expression was unaltered by chronic morphine or withdrawal. Naloxone-precipitated withdrawal symptoms in mice lacking NE-Gal (GalcKO-Dbh ) were largely similar to WT littermates, indicating that loss of NE-Gal does not exacerbate withdrawal. Complementary experiments using NE-Gal overexpressor mice (NE-Gal OX) and systemic administration of the galanin receptor agonist galnon revealed that increasing galanin signaling also failed to alter behavioral withdrawal, while suppressing noradrenergic transmission with the alpha-2 adrenergic receptor agonist clonidine attenuated multiple symptoms. These results indicate that galanin does not acutely attenuate precipitated opioid withdrawal via an LC-specific mechanism, which has important implications for the general role of galanin in regulation of somatic and affective opioid responses and LC activity.


Assuntos
Galanina/farmacologia , Locus Cerúleo/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Analgésicos Opioides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Feminino , Hibridização In Situ , Masculino , Camundongos , Morfina/farmacologia , Naloxona/farmacologia , Entorpecentes/farmacologia , Neurônios/metabolismo , Neuropeptídeos/farmacologia , Norepinefrina/metabolismo , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , RNA Mensageiro/metabolismo , Receptores de Galanina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
bioRxiv ; 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34981056

RESUMO

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naïve vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.

18.
Nat Immunol ; 22(1): 86-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33235385

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.


Assuntos
COVID-19/imunologia , Modelos Animais de Doenças , Reinfecção/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Chlorocebus aethiops , Epidemias/prevenção & controle , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Humanos , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Reinfecção/virologia , SARS-CoV-2/fisiologia , Linfócitos T/metabolismo , Linfócitos T/virologia
19.
bioRxiv ; 2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511377

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen candidate vaccines and treatments. Nonhuman primates (NHP) are considered the gold standard model for many infectious pathogens as they usually best reflect the human condition. Here, we show that African green monkeys support a high level of SARS-CoV-2 replication and develop pronounced respiratory disease that may be more substantial than reported for other NHP species including cynomolgus and rhesus macaques. In addition, SARS-CoV-2 was detected in mucosal samples of all animals including feces of several animals as late as 15 days after virus exposure. Importantly, we show that virus replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other NHP studies.

20.
J Infect Dis ; 221(Suppl 4): S414-S418, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31665362

RESUMO

Due to the difficulty in conducting clinical trials for vaccines and treatments against Nipah virus (NiV), licensure will likely require animal models, most importantly non-human primates (NHPs). The NHP models of infection have primarily relied on intratracheal instillation or small particle aerosolization of NiV. However, neither of these routes adequately models natural mucosal exposure to NiV. To develop a more natural NHP model, we challenged African green monkeys with the Bangladesh strain of NiV by the intranasal route using the laryngeal mask airway (LMA) mucosal atomization device (MAD). LMA MAD exposure resulted in uniformly lethal disease that accurately reflected the human condition.


Assuntos
Chlorocebus aethiops , Modelos Animais de Doenças , Infecções por Henipavirus/virologia , Vírus Nipah , Administração Intranasal , Aerossóis , Animais , Feminino , Infecções por Henipavirus/mortalidade , Masculino , Carga Viral , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA