Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39093068

RESUMO

Background: Recent advances linking gut dysbiosis with neurocognitive disorders such as Alzheimer's disease (AD) suggest that the microbiota-gut-brain axis could be targeted for AD prevention, management, or treatment. Objective: We sought to identify probiotics that can delay Aß-induced paralysis. Methods: Using C. elegans expressing human amyloid-ß (Aß)1-42 in body wall muscles (GMC101), we assessed the effects of several probiotic strains on paralysis. Results: We found that Lacticaseibacillus rhamnosus HA-114 and Bacillus subtilis R0179, but not their supernatants or heat-treated forms, delayed paralysis and prolonged lifespan without affecting the levels of amyloid-ß aggregates. To uncover the mechanism involved, we explored the role of two known pathways involved in neurogenerative diseases, namely mitophagy, via deletion of the mitophagy factor PINK-1, and fatty acid desaturation, via deletion of the Δ9 desaturase FAT-5. Pink-1 deletion in GMC101 worms did not modify the life-prolonging and anti-paralysis effects of HA-114 but reduced the protective effect of R0179 against paralysis without affecting its life-prolonging effect. Upon fat5 deletion in GMC101 worms, the monounsaturated C14:1 and C16:1 FAs conserved their beneficial effect while the saturated C14:0 and C16:0 FAs did not. The beneficial effects of R0179 on both lifespan and paralysis remained unaffected by fat-5 deletion, while the beneficial effect of HA-114 on paralysis and lifespan was significantly reduced. Conclusions: Collectively with clinical and preclinical evidence in other models, our results suggest that HA-114 or R0179 could be studied as potential therapeutical adjuncts in neurodegenerative diseases such as AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA