Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 11(10): 2734-2743, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27434622

RESUMO

The efficacy of therapeutic antibodies that induce antibody-dependent cellular cytotoxicity can be improved by reduced fucosylation. Consequently, fucosylation is a critical product attribute of monoclonal antibodies produced as protein therapeutics. Small molecule fucosylation inhibitors have also shown promise as potential therapeutics in animal models of tumors, arthritis, and sickle cell disease. Potent small molecule metabolic inhibitors of cellular protein fucosylation, 6,6,6-trifluorofucose per-O-acetate and 6,6,6-trifluorofucose (fucostatin I), were identified that reduces the fucosylation of recombinantly expressed antibodies in cell culture in a concentration-dependent fashion enabling the controlled modulation of protein fucosylation levels. 6,6,6-Trifluorofucose binds at an allosteric site of GDP-mannose 4,6-dehydratase (GMD) as revealed for the first time by the X-ray cocrystal structure of a bound allosteric GMD inhibitor. 6,6,6-Trifluorofucose was found to be incorporated in place of fucose at low levels (<1%) in the glycans of recombinantly expressed antibodies. A fucose-1-phosphonate analog, fucostatin II, was designed that inhibits fucosylation with no incorporation into antibody glycans, allowing the production of afucosylated antibodies in which the incorporation of non-native sugar is completely absent-a key advantage in the production of therapeutic antibodies, especially biosimilar antibodies. Inhibitor structure-activity relationships, identification of cellular and inhibitor metabolites in inhibitor-treated cells, fucose competition studies, and the production of recombinant antibodies with varying levels of fucosylation are described.


Assuntos
Fucose/metabolismo , Hidroliases/metabolismo , Bibliotecas de Moléculas Pequenas , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Fucose/antagonistas & inibidores , Guanosina Difosfato Manose/metabolismo , Espectrometria de Massas , Estrutura Molecular , Ressonância de Plasmônio de Superfície
2.
Bioorg Med Chem Lett ; 23(24): 6625-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24215889

RESUMO

A series of urea based calcimimetics was optimized for potency and oral bioavailability. Crucial to this process was overcoming the poor pharmacokinetic properties of lead thiazole 1. Metabolism-guided modifications, characterized by the use of metabolite identification (ID) and measurement of time dependent inhibition (TDI) of CYP3A4, were essential to finding a compound suitable for oral dosing. Calcimimetic 18 exhibited excellent in vivo potency in a 5/6 nephrectomized rat model and cross-species pharmacokinetics.


Assuntos
Hiperparatireoidismo Secundário/tratamento farmacológico , Tiazóis/química , Tiazóis/uso terapêutico , Ureia/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Meia-Vida , Hiperparatireoidismo Secundário/metabolismo , Hiperparatireoidismo Secundário/patologia , Masculino , Hormônio Paratireóideo/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Tiazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA